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(57) ABSTRACT

The disclosed Auditory RRC-Humanoid Robot equipped
with a verbal-phoneme sound generator is a computer-based
system programmed to reach high levels of human-like ver-
bal-Al. Behavioral programming techniques are used to reach
human-like levels of identification-Al, recognition-Al, and
comprehension-Al of all the words and sentences presented
to the robot as verbal input signals. An innovative behavioral
speech processing methodology is used to recognize and
repeat the acoustic sequential set of phoneme signals that
comprise the verbally generated speech of human speakers.
The recognized and repeated sequential set of phoneme sig-
nals are then mapped onto a unique phonetic structure such as
all the words and clauses listed in a 50,000 word lexicon that
may then make up the vocabulary of the RRC-Robot. The
system is programmed to hear and understand verbal speech
with its auditory sensors, and intelligently responds by ver-
bally talking with its verbal-phoneme sound generator.
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INTELLIGENT AUDITORY HUMANOID
ROBOT AND COMPUTERIZED
VERBALIZATION SYSTEM PROGRAMMED
TO PERFORM AUDITORY AND VERBAL
ARTIFICIAL INTELLIGENCE PROCESSES

CLAIM OF BENEFIT TO PRIOR APPLICATION

This application is a continuation-in-part of and claims
benefit to U.S. Non-Provisional patent application Ser. No.
14/253,861, entitled “Intelligent Visual Humanoid Robot
And Computer Vision System Programmed To Perform
Visual Artificial Intelligence Processes,” filed Apr. 15, 2014.
The U.S. Non-Provisional patent application Ser. No. 14/253,
861 is incorporated herein by reference.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the following applications:
U.S. patent application Ser. No. 10/041,713, entitled “Rela-
tional Robotic Controller,” filed Jan. 4, 2002, now issued as
U.S. Pat. No. 6,560,512; and U.S. patent application Ser. No.
09/761,960, entitled “Relational Correlation Sequencer,”
filed Jan. 17, 2001. The U.S. patent application Ser. No.
10/041,713, now issued as U.S. Pat. No. 6,560,512, and U .S.
patent application Ser. No. 09/761,960 are incorporated
herein by reference.

BACKGROUND

Embodiments of the invention described in this specifica-
tion relate generally to human-like artificial intelligence, and
more particularly, to human-like artificial intelligence of rela-
tional robotic controller (RRC)-controlled Humanoid robotic
systems.

The design of “thinking computers™ has been a goal of the
discipline of Artificial Intelligence (Al) since the advent of
digital computers. In 1950, Alan Turing, arguably, the
founder of Al, posed the question “when is a machine think-
ing'?” His approach to an answer was in terms of the behavior
of the machine (Turing, A. M. 1950; “Computing machinery
and Intelligence” Mind, 59 433-60). He devised an 1.Q. “Tur-
ing test’ based on the conversational behavior of the machine;
and deemed any machine that passed the 1.Q.-test to be a
thinking machine.

Following Alan Turing, this disclosure describes a building
path for a machine that can reach human-like levels of verbal
Artificial Intelligence (Al), defined in terms of the verbal
behavior of the machine. But instead of programming the
computer with Al, we first program a ‘robotic self” into the
system, that identifies the robotic system, and then program,
experientially, all the Al that the robot gains with respectto, or
into the robotic self coordinate frame of the system. So that it
is the robotic self that develops a high IQ-level of intelligence,
NOT the objective-mechanical digital computer system.

We have thereby designed a system, called a Relational
Robotic Controller (RRC)-system that has a subjective iden-
tity and Al-knowledge associated with that identity. It is the
‘robotic self,” programmed into the computer that has verbal
intelligence, not the objective-mechanical digital computer.

A Note about Human-Like Levels of Al

Human-like levels of Al have never before been pro-
grammed into computer systems. For that reason, embodi-
ments of the invention described in this disclosure differen-
tiate between objective data and subjective data (data
programmed with respect to a ‘robotic self” coordinate frame
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of the system). Objective data represents the data pro-
grammed into most of the present day digital computers and
computing devices. By use of symbolic logic algorithms
these computing devices may exhibit forms of artificial intel-
ligence. However, this specification labels all such intelli-
gence as machine-like intelligence, rather than human-like
intelligence. Machine-like intelligence may, therefore, refer
to the objective knowledge programmed into all modern day
computing devices. In contrast, human-like intelligence
refers to the data programmed into the computing system
with respect to the robotic self-coordinate frame of the sys-
tem.

All programmable digital computers do not have a “self
identity” as a human does, that could absorb and convert all
data into subjective knowledge, knowledge absorbed relative
to the “self” of the machine. Therefore, the ordinary comput-
ers do not have human-like intelligence, they have machine-
like intelligence.

Machine-like intelligence may refer to the objective
knowledge programmed into all modern day computing
devices. Human-like intelligence is obtained relative to the
“self” of the machine. Human-like intelligence is called sub-
jective knowledge.

The following are six requirements of human intelligence
that are fundamental to any quantitative measure of intelli-
gence. When those six requirements are imposed on a robotic
computer system, the system may achieve human-like levels
of' Al. Those six requirements also form the basis for a quan-
titative definition of human-like Al (see lexicography sec-
tion).

Requirement #1. The Robotic Controller Must Relate, Cor-
relate, Prioritize and Remember Sensory Input Data.

Ithas been observed that human intelligence in the human
brain is generally achieved by relating, correlating, prioritiz-
ing and remembering input patterns that are observed by the
human sensory system (consisting of the tactile, visual, audi-
tory, olfactory and gustatory sensors). Therefore relating,
correlating, prioritizing and remembering must be the essen-
tial analytic tool of a robotic controller. The RRC, (a propri-
etary robotic controller of MCon Inc.), was specifically
designed to emulate the operation of the human brain. It also
was designed to operate with a ‘self” circuit that is the central
hub of intelligence for the whole robotic system.

Requirement #2. The Robotic System Must have Proprio-
ceptive Knowledge.

Humans have a self-location and identification coordinate
frame that is trained from infancy to give the human brain a
proprioceptive self-knowledge capability. Even a baby, with a
self-knowledge capability, instinctively knows the location of
every surface point on its body, the location of its flailing
limbs, and by extension, the location of every coordinate
frame point in the near space defined by its flailing limbs. The
fundamental design characteristic of any human-like intelli-
gent system is a centralized hub of intelligence that is the
centralized “self location and identification” coordinate
frame of the system. The RRC-Humanoid Robot is designed
to give the robot a form of proprioceptive knowledge, similar
to human proprioceptive intelligence. In the RRC-Robot, the
self-knowledge capability is the basis for all knowledge.

Requirement #3. Contextual ‘Self-Knowledge’ of Other
Sensory Data Must be Achieved by Relating/Correlating with
the Self-Location and Identification Coordinate Frame of the
System.

In order to achieve contextual ‘self-knowledge’ of the
visual data, auditory data, olfactory data, gustatory data, and
vestibular data, all the data obtained from those human-like
sensors must be related and correlated with the self-knowl-
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edge, self-location and identification coordinate frame. The
RRC is ideally suited to relate and correlate the visual, audi-
tory, olfactory, and gustatory data with the self-location and
identification coordinate frame that serves as the central hub
of intelligence of an RRC-robotic system.

Requirement #4. Human Intelligence is Gained Only from
the Human-Like Sensors.

In this disclosure we consider the external sensors: Tactile,
visual, auditory, olfactory, gustatory, and vestibular sensors.
These sensors provide for the sensations associated with
human ‘feeling,” “ seeing,” ‘hearing,” ‘smelling,’ ‘tasting,” and
‘balancing,’ respectively.

The recording monitors of the RRC-Humanoid Robot are
mechano-electric sensors that emulate the external sensors of
humans. The 6-robotic sensors should be human-like sensors
designed to gain the same information as is gained by the
human sensors. These sensors provide for behavioral/experi-
ential intelligence associated with ‘experiential feeling,’
‘experiential seeing,’, ‘experiential hearing,’ ‘experiential
smelling,” ‘experiential tasting,” and ‘experiential balancing.’
See the disclaimer at the end of the Detailed Description of
the Invention Section to clarify that the inventors claim that
the robot behaves as if it ‘feels,” ‘sees,” ‘hears,” ‘smells,” or
‘tastes,” the input data.

Requirement #5. Human Intelligence is Experiential Intel-
ligence.

Humans learn from, and remember their experiences
throughout their lifetime. A behaviorally programmed
human-like system has a memory system that remembers the
experiences of the robot and emulates the experiential intel-
ligence of a human. The RRC robot has a memory system that
may be behaviorally programmed to remember all its expe-
riences.

Requirement #6. Human-Like Intelligence is Gained Only
by a Mechanically Human-Like Robotic System.

The mechanical robotic body and associated sensors must
simulate the human body and the human sensors. The robotic
body must be bipedal, standing and walking upright with two
arms, hands and five fingers per hand free to manipulate
objects in the environment. The six (6) robotic sensors should
be human-like sensors designed to gain the same information
as is gained by the human sensors. The mechanical robotic
body of the RRC-Humanoid Robot emulates the static and
dynamic characteristics of the human body.

Those six requirements must be fulfilled by any robotic
computer/controller in order to have a human-like Al capa-
bility. Those six requirements form the basis for the robotic
definition of human-like intelligence (see lexicography sec-
tion).

Embodiments of the Invention

RRC-Humanoid Robots

Embodiments of the Invention Described in this Disclosure
Pertain to Intelligent Auditory RRC-Humanoid Robots
Equipped with a Computerized Verbalization System.

This disclosure describes an RRC-based computer audi-
tory and verbalization system called an Auditory RRC-hu-
manoid robot that is programmed to hear and understand
human speech and respond by talking intelligently. In addi-
tion, the experiential or behavioral form of programming
coupled with the memory system, leads to a robotic capability
of abstracting or conceptualizing the input data patterns
detected by the robot (see section D, Step 7, paragraph titled
‘conceptualization’). This level of auditory and verbalization
Al is analogous to the intelligence that may be gained from
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4

the human ‘hearing and speaking’ experience. The innova-
tions of this disclosure lie in the design of a human-like
microphone based auditory recording monitor, the design of
a verbal-phoneme sound generator and the interface circuits
between the auditory recording monitor, verbal-phoneme
sound generator and a relational robotic controller system
that may be programmed to reach human-like levels of audi-
tory-Al, analogous to human-like ‘hearing and speaking’
However, a relational robotic controller, called a RRC (Rela-
tional Robotic Controller)-system has already been patented
and is described in the related applications section. The fol-
lowing is a general discussion relating to the RRC and the
human-like Al gained by the mechanical analogues to the
other human external sensors (tactile, visual, olfactory, gus-
tatory, vestibular, etc.), in addition to the auditory and vocal-
izing systems of humans.

Smart Robotic Systems Programmed to Reach Human-
Like High IQ Levels of AL

A computer based robotic system called an Auditory RRC-
humanoid robot is described in this disclosure. The RRC-
humanoid robot is a computer-based system that may be
programmed to become a highly intelligent “smart system.”
The intelligence level of the RRC-humanoid robot is exem-
plified by the low 1Q machine devised by Alan Turing, the
founding father of Artificial Intelligence (Al). However, the
low IQ Turing machine did not have human-like intelligence.
It was just another objective computing device programmed
to reach machine-like levels of Al. On the other hand, the
RRC-Humanoid Robot is programmed to reach human-like
levels of Al by relating all data (knowledge) to a defined/
centralized “self” (a self location and identification coordi-
nate frame) within the computer. The intelligence level (the
1Q) ofthe system is quantified by the number of programmed
data-facts that are related and correlated to the self-location
and identification coordinate frame of the system. An audi-
tory RRC-Humanoid Robot may be programmed to reach
1Q-levels exceeding the IQ of a college professor. RRC-re-
cording monitor systems that are programmed to reach
human-like levels of Al are called Auditory RRC-humanoid
robots.

RRC-Humanoid Robots: A Revolutionary Development.

Human-like intelligence levels have never before been pro-
grammed into a computer system. The inventors believe that
RRC-humanoid robots, exhibiting human-like and super-hu-
man-like levels of intelligence, will revolutionize the 21st
century so that humanoid RRC-robotic systems are as com-
mon as automobiles.

An RRC-humanoid robot includes at least the following:

a) A mechanical robotic system: The mechanical system is
made up of a human-like robotic body, bipedal limbs, energy-
power source, and the motors and gears required to move the
body, limbs, arms, hands, and fingers.

b) Sensory recording monitors: The human-like recording
monitors are those that simulate the six human external sen-
sors (tactile, vestibular, visual, auditory, olfactory and gusta-
tory). The recording monitors are the data-gathering portions
of'the RRC-humanoid robotic system. They include pressure
transducer sensors (tactile), vestibular (balance) sensors,
video-visual sensors (visual), microphones and verbal pho-
neme generators (auditory), gas chromatograph (olfactory),
and wet mass spectrometer (gustatory). All artificial intelli-
gence for the system is gained by processing/programming
the input data obtained from the 6 human-like recording
monitors.

¢) A Relational Robotic Controller (RRC): The RRC is
used to control the motors and verbal-phoneme sound gen-
erator of the mechanical robotic system. Note that RRC, (U.S.
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Pat. No. 6,560,512, issued May 6, 2003), is an operating
system that has been designed (reverse engineered) to operate
like the human brain (based on the assumption that the human
brain relates, correlates, prioritizes and remembers rather
than computes and solves problems). An RRC consists of sets
of' Relational Correlation Sequencer (RCS) modules (See the
Incorporated Disclosure listed in Related Applications sec-
tion) and associated memory units called Task Selector Mod-
ules (TSMs) that operate by relating and correlating the input
signals and prioritizing and remembering important correla-
tions. Relational and correlational training is facilitated by the
RCS-modules that make up the RRC-system.

d) An interface circuit between the sensory recording
monitors and the RRC-controller. In general, the interface
circuit of any intelligent RRC-Humanoid Robot is the most
innovative element in the system. For any one of the recording
monitors incorporated into a humanoid RRC-system, four
major steps are required to properly design the interface.

1) The required human-like intelligence level of the sen-
sory input q-signals must be specified.

2) The sensory system must be designed so that the dis-
crimination and resolution of the signals is compatible with
each of the specifications of each of the 6 human external
sensors (tactile, vestibular, visual, auditory, olfactory and
gustatory).

3) The sensory system signals must be calibrated and
scaled with the dimensionality and scaling present in the
RRC-Nodal Map Module to which the data is applied.

4) Proof that the interface is properly designed is obtained
by specitying the training-programming of the RRC so as to
achieve the required level of human-like artificial intelli-
gence.

The inventors have invented 3-preferred embodiments of
the patented (tactile) RRC-Humanoid Robot that may be
programmed with human-like intelligence: a) a visual RRC-
humanoid robot equipped with human-like tactile and visual
sensors, described in the United States co-pending non-pro-
visional patent application Ser. No. 14/253,861 (see claim of
benefit to prior application section), b) an auditory RRC-
humanoid robot, described in this disclosure, is built upon the
visual humanoid robot by adding human-like auditory sen-
sors and a verbal-phoneme sound generator, to give it a verbal
‘talking’ capability, and ¢) a complete RRC-humanoid robot
incorporating all 6-human-like external sensors: it is built
upon the auditory humanoid robot by adding the human-like
olfactory sensor (gas chromatograph) and human-like gusta-
tory sensor (wet mass spectrometer).

Embodiments of the auditory RRC-humanoid robot sys-
tem include human-like auditory sensors, a verbal-phoneme
sound generator, and programming that reaches human-like
levels of declarative Al, and are built upon a visual RRC-
humanoid robot system that is designed to visualize and inter-
nalize the binocular video-visual real time data input to the
system. The system is programmed to perform phoneme,
word, and sentence pattern recognition, identification, and
comprehension and to respond verbally to words, sentences,
patterns detected by the RRC-system.

The following innovative features have been incorporated
into some embodiments of the auditory RRC-humaniod robot
system: A) Incorporation of the RRC (Patented) and RCS
(Incorporated disclosure); B) Incorporation of a p-vector
phoneme space, input to the multi-dimensional Nodal Map
Module; C) Incorporation of a babbling Sequence Stepper
Module; D) A paradigm shift in the speech processing meth-
odology employed in mapping the acoustic signals onto pho-
netic structures (relating and repeating); E) Incorporation of a
search engine access rule to facilitate the search for aresponse
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6
to any query; F) Incorporation of a central hub of intelligence
within the Declarative Hierarchical Task Diagram (DHTD);
G) Design of a self-knowledge and awareness-monitoring
capability; and H) Design of an interface circuit compatible
with human-like levels of Al

The Field of the Inventive Embodiments

The field of the inventive embodiments described in this
disclosure is relatively narrow. It is the design and develop-
ment of various human-like sensory recording monitors that
interface with a central controller that meet the requirements
#1, #2, #3 and #5 described in the BACKGROUND section
by reference to the sub-section entitled “A Note About
Human-Like Levels of AI”. In the preferred embodiment of
this disclosure the patented RRC-controller (U.S. Pat. No.
6,560,512, issued May 6, 2003), is utilized to meet the
requirements listed above. However, any relational robotic
controller (rrc) (in general, designated by the lower case
abbreviation rrc), that meets requirement #1, #2, #3 and #5,
may be in the field of the invention. In the following sections
the letters RRC denote the patented Relational Robotic Con-
troller utilized in the preferred embodiment of this disclosure.
Whereas the lower case letters, rrc (relational robotic control-
ler), denote any robotic controller that meets requirements #1,
#2,#3 and #5.

Robotic computing devices that are in the field of this
disclosure are constrained by the 6-requirements (listed
above) that define human-like levels of Al. After considering
the requirements, the inventors conclude that there are five
sensory rrc-Humanoid Robotic systems, and one class of
super-sensory rrc-Humanoid robotic systems that are in the
field of this disclosure.

Only Humanoid rrc-Controlled Robots Equipped with
Human-Like Sensors are in the Field of the Inventive
Embodiments

Only rrc-controlled robots are in the field of the invention.
Requirements #1, #2, #3 and #5 assure that only those robots
controlled by a rrc (relational robotic controller) may be used
to achieve levels of human-like Al

Two essential elements to programming human-like high
1Q-levels of Al into a system limit the field of this disclosure
to the group of rrc-controlled Robots. The first is that the rrc
must be specifically designed to operate like the human brain
(requirement #1). That is, the rrc relates, correlates, priori-
tizes and remembers (requirement #5) input data, rather than
computes, calculates, and displays the data, as most modern
day computing devices do. The second is the rrc must be
specifically designed to adhere to requirements #2, the prop-
rioceptive ‘self-knowledge’ capability. That is, the rrc must
generate a self-location and identification robotic self-coor-
dinate frame that forms a robotic self-identity and a central-
ized hub of ‘intelligence’ for the system, and the rrc must be
behaviorally programmed (itch-scratch methodology) to
emulate the experiential ‘self-knowledge’ gained by humans
(requirement #5). Note that the preferred embodiment, pat-
ented RRC meets all those requirements.

Only Humanoid Robots Controlled by Human-Like Sen-
sors are in the Field of Inventive Embodiments

Requirements #4 and #6 assure that only robotic systems
that are humanoid systems, equipped with human-like sen-
sors are in the field of the inventive embodiments described in
this disclosure. Requirement #6 assures that the mechanical
robotic body is human-like. Requirement #4 assures that the
humanoid robot is equipped with the six external human-like
sensors (i.e., tactile, vestibular, visual, auditory, olfactory, and
gustatory sensors).
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Those requirements restrict the group of rrc-humanoid
robots that are in the field of the inventive embodiments to the
following rrc-Humanoid Robots: The tactile, vestibular,
visual, auditory, olfactory, and gustatory rrc-Humanoid
robots.

Since all the input data of humans comes from the five
external sensors (i.e., tactile, visual, auditory, olfactory, and
gustatory sensors), there are five sensory rrc-humanoid robots
that may be programmed with human-like Al. In addition, an
rrc-Humanoid robot may be equipped with non-human sen-
sors, in addition to its human-like sensors, to form a super-
sensory rrc-Humanoid Robot. The super-sensory rrc-human-
oid robot is described and listed below as the sixth rrc-
Humanoid robot.

1. The Tactile rrc-Humanoid Robot:

The tactile rre-humanoid robot must be outfitted with pres-
sure transducer tactile sensors simulating the tactile sensors
embedded in the human skin, and vestibular sensors to give
the robot a balancing capability. A tactile rre-humanoid robot
must be programmed with a self identity form of Al, an
itch-scratch capability to move its body and limbs so as to
scratch any itch point on the robotic body, and a bi-pedal
ambulating Al-capability with the aid of balance-vestibular
sensors. Note that the RRC-Humanoid Robot meets all those
requirements and is in the field of this invention.

2. The Visual rrc-Humanoid Robot:

The visual rre-humanoid robot is outfitted with a binocular
video-visual system that simulates human vision, in addition
to the tactile and vestibular sensors of the tactile rrc-human-
oid robot. Note that a visual RRC-Humanoid robot pro-
grammed with human-like visual-intelligence is described in
co-pending U.S. patent application Ser. No. 14/253,86. The
visual RRC-Humanoid robot may be programmed with a
visualization form of Al and its behavioral programming
simulates the visualization or ‘seeing’ intelligence of ahuman
that observe the same three dimensional image as the image
formed by the binocular video-visual RRC-Humanoid
robotic system.

3. The Auditory rrc-Humanoid Robot:

The auditory rrc-humanoid robot is a visual RRC-Human-
oid robot outfitted with sound pick-up microphones that
simulate the human ear, and a verbal-phoneme sound genera-
tor that gives the robot a verbal vocalizing or ‘talking’ capa-
bility. Note that the auditory RRC-Humanoid Robot, the sub-
ject of this disclosure, is a human-like robotic system,
controlled by the proprietary Relational Robotic Controller
(RRC) and programmed to reach human-like levels of artifi-
cial intelligence in ‘hearing and understanding’ verbal speech
with its auditory sensors, and intelligently-verbally respond
to the ‘heard’ verbal speech with its vocalizing verbal-pho-
neme sound generator.

4. The Olfactory rrc-Humanoid Robot:

The olfactory rrc-humanoid robot is an auditory rrc-Hu-
manoid robot equipped with a gas chromatograph the simu-
lates the nasal sensory system of humans. This robot must be
programmed with a ‘smell-sensing’ form of Al that simulates
the ‘smelling’ capability of humans. The engineering chal-
lenge in the design of the olfactory rrc-humanoid robot is the
design of the interface circuit between the gas chromatograph
and the rrc so that the robot has a more limited human-like
analytic capability of analyzing the air sampled in the gas
chromatograph input chamber. A gas chromatograph with a
greater than human-like analytic ‘smelling’ capability is a
super-sensor in terms of its analytical capability, and may be
used to give the Robot a super-human-like form of Al. How-
ever, the more limited human-like form of ‘smelling’ Al must
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be designed into the system so that the robot can verbally
describe the super smell to humans who have the more limited
‘smelling’ capability.

5. The Gustatory rre-Humanoid Robot:

The gustatory rrc-humanoid robot is an olfactory rrc-Hu-
manoid robot equipped with a wet mass spectrometer the
simulates the ‘mouth chamber taste’ sensory system of
humans. This robot must be programmed with a ‘tasting’ form
of Al that simulates the ‘tasting’ capability of humans. The
engineering challenge in the design of the gustatory rrc-hu-
manoid robot is the design of the interface circuit between the
wet mass spectrometer and the rre so that the robot has a more
limited, human-like analytic capability of analyzing the food
and other objects sampled in the input chamber (for example,
wine tasting). A wet mass spectrometer may operate as a
super-sensor in terms of its analytical capability, and may be
used to give the rre-humanoid robot a super-human-like form
of ‘tasting’-Al. However, the more limited human-like form
of ‘tasting” Al must also be designed into the system so that
the robot can verbally describe the super taste as it would be
perceived by other humans (without a super-human like tast-
ing capability).

6. Super-Sensor rrc-Humanoid Robots:

Super sensors that give rise to super-human-like Al. An
RRC-Humanoid Robot may gain super human-like intelli-
gence levels by adding non-human sensors to the set of
human-like sensors incorporated in the system. Non-human
sensors are either sensors operating outside of the human-like
sensitivity range, or sensors that are distinctly different from
the human-like sensors. Examples of super sensors that oper-
ate outside of the human sensitivity range are visual sensors
sensitive to Infrared or vacuum-ultra-violet radiation, or
sound-microphone sensors sensitive to ultra-sound frequen-
cies (frequencies greater than 20,000 cps). Examples of sen-
sors that are distinctly different from the human-like sensors
are antennae’s and pre-amplifiers that pickup radio wave, or
radar wave electromagnetic frequencies, or X-ray detectors
that pick up X-radiation.

The Innovativeness of the Inventive Embodiments of this
Disclosure

The auditory RRC-humanoid robot, the subject of this
disclosure, is designed to pass the Turing Test unequivocally.
Alan Turing attempted to build a machine that had an Intel-
ligence Quotient (IQ) of a 6-year-old child. We shall describe
an auditory RRC-Humanoid Robot, programmed by behav-
ioral-programming techniques, that may achieve an IQ of a
college graduate, or super human-like intelligence levels
gained from super-human sensors. In general, the innovative-
ness of the described invention lies in 4 areas:

Area 1. Programming of an Auditory RRC-Humanoid
Robot with a Centralized Hub of Intelligence to Achieve
Human-Like 1Q-Levels of Al.

The fundamental design characteristic of the RRC-Hu-
manoid system is a centralized hub of intelligence that is the
centralized “self location and identification” coordinate
frame of the system. The RRC-Humanoid Robot is designed
to give the robot a form of proprioceptive knowledge, similar
to human proprioceptive intelligence. The RRC-Humanoid
robot therefore ‘knows’ the location of every surface point on
its body, the location of its flailing limbs, and by extension,
the location of every coordinate frame point in the near space
defined by its flailing limbs. In the RRC-Robot all knowledge
is ‘subjective’ knowledge, and the self-knowledge capability
is the basis for all knowledge. By relating all other sensory
datato this centralized hub of intelligence, experiential and/or
behavioral programming techniques may be utilized (require-
ment #5) that yield a human-like, high IQ-level of ‘subjective’
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Al In this disclosure, the system is programmed to hear and
understand verbal speech with its auditory sensors, and intel-
ligently responds by verbally talking with its verbal-phoneme
sound generator (which is further described below by refer-
ence to Area 4).

Area 2. The Design of an Interface Circuit.

The design of an Interface circuit between the sensors
(visual, auditory, olfactory, or gustatory) and the RRC that
converts the input signal into a format that is compatible with
the programming of high 1Q-levels of Al.

Area 3. The Definition of the Robotic ‘Self” and Program-
ming ‘Self Knowledge’ into the RRC Humanoid Robot.

There is nothing innovative about building a humanoid
robot (the mechanical robotic body and limbs that simulate
the human body). However the combination of a RRC
Humanoid Robot equipped with tactile sensors that define a
centralized self location and identification coordinate frame,
and that is programmed to develop self-knowledge for the
tactile, visual, and auditory sensors, is innovative in at least
the following ways.

Area 3(a)—

The tactile pressure transducers cover the total robotic
body and form a protective covering that simulates the human
skin (with embedded mechano-thermal receptors). This cov-
ering gives rise to a coordinate frame and intelligence asso-
ciated with the motion of limbs in that coordinate frame.

Area 3(b)—

The visual system simulates, and operates like the human
eyes (which is described by reference to co-pending U.S.
Non-Provisional patent application Ser. No. 14/253,861). It
forms a 3D-photometric image of the environment that is a
high fidelity representation of objects located in the environ-
ment. The visual system is programmed to enhance the self-
knowledge of the robot by assuring that the robot gains visual
self-knowledge of all the input visual data. This is achieved by
relating and correlating the visual data to the tactile self
location and identification coordinate frame defined by the
tactile data. With visual self-knowledge programmed into the
RRC humanoid robot, the visual system is the only environ-
mental sensing system the robot needs to operate intelligently
in any environment (e.g., it takes the place of radar, lidar,
sonar, and/or GPS systems that are often employed by
humanoid robotic systems).

Area 3(c)—

The auditory receiving microphones and verbal-phoneme
sound generator have been specifically designed to simulate
the human hearing sensors, and the human verbal vocaliza-
tion capability. The auditory system is also programmed to
enhance the self-knowledge of the robot by assuring that the
robot gains auditory self-knowledge of all the words and
sentences heard by the robot and spoken by the verbal-pho-
neme sound generator. This is achieved by relating and cor-
relating all the word and sentence input data to the words and
sentences spoken by the verbal-phoneme sound generator
and to the tactile self location and identification coordinate
frame defined by the tactile data. With the formation of audi-
tory and visual self-knowledge related to the self location and
identification circuit, and starting with the formation of pho-
neme sounds, the constituents of words and sentences, the
system has the capability of learning to converse in any lan-
guage, and to develop a human-like, high 1Q-level of Al with
the same behavioral speech processing techniques (repeti-
tion, babbling, and experiential programming) that is utilized
in the human educational system.
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Area 4. The Design of a Contextual ‘Self Knowledge’
Capability for the Other Sensors.

Contextual self-knowledge of the visual data, auditory
data, olfactory data, gustatory data, and vestibular data, is
designed into the system by relating and correlating all sen-
sory data with the self-knowledge, self-location and identifi-
cation coordinate frame. It is important to stress that the
expansion of self-knowledge must be applied to all the sen-
sors added to the system (visual, auditory vestibular, olfactory
and gustatory).

The design of contextual self-knowledge is an innovative
technique that gives the robot the capability to gain ‘subjec-
tive’ experiential knowledge about the environment and about
the systems that make up the robotic ‘self’. It is the technique
that allows the robot to operate with human-like, high 1Q-
levels of Al with all its sensors in any environment in which it
gains experiential self-knowledge.

RELATED ART

The field of the invention is relatively narrow. The tech-
nologies utilized in the development of parts of rrc-humanoid
robots may be related to a large number of commercially
available computer based systems. However, the relationship
of these technologies to the field of this invention is very
tenuous.

Related art that is not in the field of this invention, may
include the design and development of all commercial record-
ing monitors (camera recorders, audio recorders, gas chro-
matographs, wet and dry spectrometers, sonar, radar and vari-
ous electromagnetic detectors, etc.), and possibly all
artificially intelligent computer systems and peripherals (per-
sonal computers, computers, monitor recorders, printers,
telecommunication devices, etc). Recording monitors that do
not interface with a RRC controlled robot are not in the field
of this invention. Similarly robotic systems that have
machine-like artificial intelligence rather than human-like or
super human-like artificial intelligence are also not in the field
of this invention.

This invention relates to robotic recording monitors that
record real time auditory, visual, tactile, vestibular, olfactory,
and gustatory data that is utilized by the RRC-robot, and is
specifically NOT utilized by a human observer. The RRC-
robot itself performs 3D-real time video camera visualiza-
tions, verbal phoneme word-sentence comprehension and
generation, pattern recognition and identification, and moni-
toring of any other real time effect data recorded by the
RRC-recording monitor.

Advantages of the RRC-Humanoid Robot

Human-like auditory/declarative levels of artificial intelli-
gence refer to the capability of the auditory RRC-humanoid
robot to be trained/programmed to perform phoneme, word,
and sentence pattern recognition, identification and compre-
hension, and to respond verbally and intelligently, via the
verbal-phoneme sound generator, to the recognized, identi-
fied and comprehended word and sentence patterns detected
by the RRC-system. In order to quantify the amount of pro-
gramming/analysis required, we have quantitatively defined,
in the lexicography section, the amount of programming that
must be performed on a RRC-system in order to reach a) the
self-knowledge level of intelligence, b) the “identification”
level ofintelligence, ¢) the “recognition” level of intelligence,
and d) the “comprehension” level of intelligence. In each
case, quantification of the amount of programming/analysis
required to reach a high level of Al is determined by the
number and type of relations and correlations programmed
into the system.
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The advantages of the auditory RRC-humanoid robot are
listed in the following sections. However, we will first
describe an innovative behavioral speech processing method-
ology that is inherent in the design of the auditory RRC-
humanoid robot. This speech processing methodology is a
significant advance in the State of the Art (SOA) of speech
processing and a radical departure from the present method-
ologies of speech processing. The new methodology is based
on a capability of the RRC to recognize and repeat (via the
Sequence Stepper Module) the acoustic sequential set of pho-
neme-signals that comprise the phonetic words and sentences
spoken by a human speaker.

The Behavioral Speech Processing Methodology of the
Auditory RRC-Humanoid Robot

The Problem:

The problem of converting the perceived acoustic spectro-
graphic (a-f-t) properties of language (e.g., as illustrated in
FIG. 7), into an identifiable phonetic structure is an ill posed
problem, similar to the 3-dimensional inverse optics problem
that was solved in co-pending U.S. Non-Provisional patent
application Ser. No. 14/253,861, the complete contents of
which are incorporated into this disclosure. There is not a
simple one to one mapping between the acoustic properties of
the speech signals and the phonetic structure of an utterance.
Co-articulation (the segmentation problem) is generally iden-
tified as the major source of the problem. Co-articulation
gives rise to difficulty in dividing the acoustic signal into
discrete “chunks” that correspond to individual phonetic seg-
ments. Co-articulation also gives rise to a lack of invariance in
the acoustic signal associated with any given phonetic seg-
ment. The usual methods for solving the problem include
lexical segmentation processing (co-articulation), word rec-
ognition processing, context effect processing, syntactic
effects on lexical access processing, lexical information and
sentence processing, syntactic processing, and intonation-
structure processing.

The State of the Art (SOA):

Most, if not all, computer auditory/declarative systems
have not solved the acoustic mapping problem (one to one
mapping of the acoustic spectrographic (a-f-t) properties of
language, onto an identifiable phonetic structure). The SOA-
systems operate by computing, calculating, and solving a
large number of auxiliary problems related to the mapping of
the acoustic signals onto a selected ‘most-probable’ phonetic
structure. The problem is complex because there does not
exist a one to one correspondence between the acoustic signal
and the phonetic structure. And many additional visual cues
and verbal cues must be added to the system in order to find a
unique one to one correspondence. At the present time this
problem has not been solved. And the SOA auditory/declara-
tive Al-computer system operates by a) attempting to identify
and recognize the input sound signal, b) relating those input
sound signals to one of a set of pre-recorded words or
sequence of words, and ¢) depending on the success in rec-
ognized input signal, respond with a pre-recorded sequence
of words tailored to the recognized signal.

The RRC-Humanoid Robot Behavioral Speech Processing
Methodology for Solving the Inverse Auditory Problem: A
Significant Advance in the Speech Processing SOA.

Because of the complexity in the mapping between the
acoustic signal and phonetic structure, an experiential, behav-
ioral programming methodology was developed for ‘unpack-
ing’ the highly encoded, context dependent speech signals.
‘Unpacking’ is performed in the Interface Circuit by pro-
gramming the RRC to repeat and ‘remember’ (in the TSM-
memory modules) the ‘heard” words and sentences of mul-
tiple speakers.
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Repetition and Babbling the Words and Sentences Taken
from a 50,000 Word Lexicon (Task 201 in Table 3):

Training to repeat the phoneme-sound based words and
sentences is described in section C, step 6a of this disclosure.
The trained repetition and babbling sub-task A-1 TSM, acti-
vates the total vocabulary of the robot. (Note that the sub-task
A-1TSM acts as memory module that remembers the 50,000
Task Initiating Trigger (TIT) words taken from the word
lexicon, and that the Sequence Stepper Module is trained to
repeat each of those TIT-words). In order to achieve repetition
accuracy it is necessary to refine the design of the verbal-
phoneme sound generator, expand the number of phoneme
sounds listed in the 120 phoneme sound combinations uti-
lized in the preferred embodiment RRC-humanoid Robot,
and refine the tuning of the spectrum analyzer to the actual
collective modalities present in the English language verbal
input signal.

Additional speech processing by behavioral programming
techniques includes the following: First, by relating, corre-
lating, associating and calibrating the heard verbal speech
with the corresponding visual and tactile data obtained in the
visual and tactile coordinate frames in which the robot is
operating. Next, by training the RRC-Robot to be sensitive to
such factors as acoustic phonetic context, speaker’s ‘body
language,” speaking rates, loudness and ‘emotion laden’ into-
nations. The Auditory RRC-Humanoid Robot takes into
account the acoustic consequences of such variations when
mapping the acoustic signal onto the phonetic structure. The
problems of speaker’s ‘body language,” emotion laden' into-
nations, acoustic phonetic context, speaking rates, and loud-
ness is solved in the Auditory RRC by coordinating the search
engines of the visual and tactile systems with the search
engine of the Auditory RRC-Humanoid Robot.

An auditory RRC-system achieves human-like levels of
intelligence by relating, correlating prioritizing and remem-
bering speech phoneme-input data, the basic constituents of
language, rather than computing and solving problems asso-
ciated with the acoustic content of the verbal input signals.

The inventors believe that without a solution to the acoustic
mapping problem, the present day SOA auditory/declarative
calculating computer cannot achieve human-like levels of Al.
The reason for this is the complexity of the co-articulation
(segmentation) problem, and the fact that many visual cues,
as well as acoustic variations (such as emotion laden intona-
tions) have not been added to the system.

RRC-Humanoid Robot Comparison to Other Computer-
ized Human-Like AI-Systems

Advantages of an Auditory RRC-System for Defining
Human-Like Levels of Al

The RRC described in U.S. Pat. No. 6,560,512, issued May
6, 2003, is an operating system that has been designed (re-
verse engineered) to operate like the human brain (based on
the assumption that the human brain relates, correlates, pri-
oritizes and remembers rather than computes and solves
problems). An RRC consists of sets of Relational Correlation
Sequencer (RCS) modules and associated memory units
called Task Selector Modules (TSMs) that operate by relating
and correlating the input signals and prioritizing and remem-
bering important correlations. Relational and co-relational
training is facilitated by Relational Correlation Sequencer
(RCS)-modules that makes up the RRC-system (see also the
Incorporated Disclosure listed in the Related Applications
section).

The RRC controls the tasks (including sound generation,
memory storage and retrieval tasks) performed by a robot.
The RRC is programmed to perform all tasks relative to a
self-location and identification task, performed by a nodal
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map, known as the self-nodal map, and associated with one of
the RCSs that make up a RRC. A trained self-nodal map gives
the robot a level of intelligence that may be called “self
location and identification” knowledge (proprioceptive
knowledge). The totality of the “self location and identifica-
tion” data, stored in a TSM-memory module, is the basis for
the “self Knowledge” capability of the RRC-robot.

In order to be capable of achieving a level of programmed
intelligence that can be termed human-like, the RRC-system
has a self-knowledge capability and it constantly monitors the
sensory data throughout the operational lifetime of the robot.

In addition, the sensory data obtained by any robotic sys-
tem must be “internalized” with respect to the self-knowledge
memory module. Internalization means that the data from
each of the different sensory systems must be related and
correlated with the self-knowledge memory module in a man-
ner such that the robot develops self-knowledge of the visual
data, the auditory data, the olfactory data, and the gustatory
data.

The innovativeness of the inventive embodiments
described in this disclosure also lies in the design of an inter-
face that facilitates the internalization of sensory data into the
self-knowledge module. The following innovative features
have been incorporated into the design of the interface circuit:

a) Incorporation of a p-vector phoneme space, input to the
multi-dimensional Nodal Map Module;

b) Incorporation of a babbling Sequence Stepper Module;

¢) A paradigm shift in the speech processing methodology
employed in mapping the acoustic signals onto phonetic
structures (relating and repeating); and

d) A methodology for relating and correlating the multi-
dimensional Nodal Map Module with the self-location and
identification self-knowledge module.

With the internalization process in place, achieving
human-like intelligence of the sensory data is dependent on
the level of training or programming performed on the RRC-
controlled robot. It is a software development involving rela-
tions and correlations between signals wherein “robotic self-
knowledge,” “robotic awareness,” “robotic comprehension,”
“robotic visualization,” and “sensation” generation within the
RRC, all refer to the level of training programming of the
various modules of the RRC. The high levels of training-
programming associated with robotic comprehension and
visualization imply a large number of relations and correla-
tions between the various sensory signals, programmed into
the system.

How the Inventive Embodiments Differ from and/or
Improves Over Existing Systems

Human-like, high 1Q-AI is highly dependent on hearing
and comprehending verbal speech, and the capability to
respond verbally to the heard speech. Without a one to one
mapping of the acoustic signals onto a reasonable phonetic
structure, such human-like high IQ-Al becomes impossible.
The claimed invention is unique and an improvement over
what currently exists for the nine reasons outlined below.
However, the most unique improvement is the solution
offered, in the design of the auditory interface circuit, of the
one to one mapping methodology of the acoustic signals onto
a reasonable phonetic structure. The invention described
herein, the acoustic RRC-Humanoid robot, is an improve-
ment over what currently exists because of the following
innovative features that have been incorporated into the sys-
tem.

1. Incorporation of the RRC:

The RRC described in U.S. Pat. No. 6,560,512, issued May
6, 2003, is an operating system that has been designed (re-
verse engineered) to relate, correlate, prioritize and remem-
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ber auditory input data. Relating, correlating, prioritizing and
remembering auditory input phoneme-patterns is the essen-
tial analysis tool required to organize and centralize the col-
lected data, and thereby reduce the amount of programming
required to access the remembered auditory input patterns.

In contrast, most other auditory-verbalizing computers
start the memory and prioritization process at the word or
sentence level. For any given query, the mapping ofthe acous-
tic signal onto a phonetic set of words or sentences is very
inexact, and the number of combinations of words and sen-
tences so large, that the system is subject 50-90% error rates.
In addition the number of relations and correlation required to
home in on an appropriate response requires a very large
number of programming steps to reduce the error rate to
below 50%. Therefore SOA auditory-verbalizing computers
limit the number of queries that they can recognize to a very
small number, and they limit their responses to an analogous
small number of words. The response is often non-verbal. For
example, the response may require confirmation, such as a
button push or mouse click.

2. Incorporation of the RCS:

An RRC consists of sets of Relational Correlation
Sequencer (RCS) modules and associated memory units
called Task Selector Modules (TSMs) that operate by relating
and correlating the input signals and prioritizing and remem-
bering important correlations. The RCS is a proprietary mod-
ule described in document: Ser. No. 09/761,960, titled “Rela-
tional Correlation Sequencer” (RCS), filed Jan. 17, 2001 in
the name of David Rosen and Alan Rosen, and incorporated
into the RRC-patent (U.S. Pat. No. 6,560,512, issued May 6,
2003).

By contrast, most other computer systems are not made up
of modules specifically designed to relate and correlate input
signals and then prioritize and remember important correla-
tions.

3. Incorporation of a Central Hub of Intelligence:

The RRC is programmed to perform all tasks relative to a
self location and identification task, performed by a nodal
map, known as the self nodal map/coordinate frame, and
associated with one of the RCSs that make up a RRC. It is
important to stress the word all, since no task may be per-
formed by the system that is not related to the centralized
self-nodal map/coordinate frame. The centralized self-nodal
map coordinate frame is the central hub of intelligence for the
system. Therefore it is easy to access data stored in the central
intelligence hub.

In contrast, most other computer systems do not relate all
the programmed tasks to a single centralized coordinate
frame/task. Therefore it is much more difficult to access the
diverse “knowledge-data” stored in the computer system.

4. Design of a Self-Knowledge Capability:

A ftrained self-nodal map-coordinate frame, programmed
into a Nodal Map Module (NMM). gives the robot a level of
intelligence that may be called “self location and identifica-
tion” knowledge. This trained NMM has all the information/
knowledge associated with the proprioceptive knowledge
present in every human. The totality of the programmed ‘self
location and identification’ data, stored in a TSM-memory
module, is the basis for the self-knowledge (proprioceptive
knowledge) level of intelligence. A RRC robot with a fully
programmed self-knowledge capability “knows” the location
of every surface point of the robotic body, the location of
flailing limbs, and by extension, the location of every coor-
dinate frame point in the near space defined by flailing limbs.

In comparison, robotic machines independent of the RRC,
which have been designed in the past with the goal of simu-
lating proprioceptive-like intelligence levels, failed to
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achieve their goal because the robotic machines did not relate
all the data obtained to a self-knowledge coordinate frame
that should have been programmed into the system. Examples
of such machines, which do not have a self-knowledge capa-
bility, are the famous Turing machine and the chess playing
computers that always win when playing against a human
competitor. Most other computer systems don’t have a self-
knowledge capability-coordinate frame to which all other
data may be related. They do not internalize the data into a
self-knowledge coordinate frame; that is, they do not relate all
the programmed tasks to a single centralized coordinate
frame/task.

5. Design of an “Awareness”-Monitoring Capability:

In order to be capable of achieving a level of programmed
intelligence that can be termed human-like “awareness” of
the input data, the robotic system must constantly monitor the
sensory data throughout the operational lifetime of the robot,
and relate the monitored data to the self-knowledge coordi-
nate frame.

Most other computer systems designed to perform moni-
toring or surveillance do not have a human-like “awareness”
capability unless the monitored data is constantly related to a
self-knowledge coordinate frame. When tactile sensors that
form a protective covering of the robotic body, constantly
monitor the environment around the robotic body for any
possible tactile activation, then robotic self-knowledge
becomes another level of intelligence called “robotic self
awareness” of the tactile environment around the robot.
Robotic self awareness coupled with self-knowledge of the
tactile sensory data may lead to a robotic reaction to the data
that is analogous to the human-like modality of “feeling
touch-pain” associated with the pressure exerted on tactile
mechano-receptors (pressure transducers).

6. Internalization of the Data:

In a RRC system, the sensory data obtained by any record-
ing monitor must be “internalized” with respect to the self-
knowledge memory module. Internalization means that the
data from each of the sensors must be related and correlated
with the self-knowledge memory module in a manner such
that the robot develops self-knowledge of the visual data, the
auditory data, the olfactory data, and the gustatory data. The
self-knowledge level of intelligence may therefore be gained
for the auditory, olfactory, and gustatory sensors, in addition
to the visual sensors. And the total “knowledge” gained by the
system may be quantified by the number of relations and
correlations programmed into the system.

By contrast, the designers of most other computer systems
have never quantified the level of intelligence programmed
into their system by the number of relations and correlations
between the various sensory data inputs. In addition they
rarely centralize and store all the relations and correlations
into a self-knowledge coordinate frame. Therefore, internal-
ization with respect to the self-knowledge memory module
remains a unique and innovative characteristic of the RRC-
recording monitor system.

7. Paradigm Shift in the Analytical-Programming Method-
ology Employed in Auditory Verbalization Systems.

The analytical-programming methods employed by the
RRC-humanoid system are a paradigm shift in the method-
ology generally employed by other computer auditory-ver-
balization systems. The shift in emphasis is from analytical
programming methodologies involving the identification and
recognition of words and sentences spoken by humans, to
analytic programming operating on sequences of phoneme
sounds, the constituents of words and sentences, and pro-
gramming the system to repeat and ‘learn’ the sequential
phoneme patterns that make up the words and sentences
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commonly used by humans (e.g., words and sentences that
may be listed in a 50,000 word lexicon, that is the total
vocabulary of the Robot). The system is therefore designed to
recognize any word present in the 50,000-word lexicon, and
any sentence made up of those words. This leads to an accu-
racy of identification and recognition of words and sentences
approaching 100%.

In comparison, most SOA auditory/declarative Al-com-
puter systems operate by a) attempting to identify and recog-
nize the word and sentence-input sound signal, b) relating
those words and sentences to one of a set of pre-recorded
words or sequence of words, and ¢) depending on the success
in recognizing the input signal, responding with a pre-re-
corded sequence of words tailored to the recognized signal.
SOA systems are therefore limited by their analytic design to
recognize only those the words and sentence programmed
into the system, and in addition the words and sentences
programmed into the system are susceptible to co-articulation
errors. This leads to an accuracy of identification and recog-
nition of words and sentences below 50% of the words or
sentences that would be applied to the system, if it had
human-like auditory intelligence.

8. Design of an Interface Circuit Compatible with Human-
Like Levels of Al

The innovativeness of the inventive embodiments
described in this disclosure also lie in the design of an inter-
face that facilitates the internalization and the human-like
self-knowledge level of intelligence of the auditory data.
Some unique elements in the interface design are as follows:

a) The spectrum analyzer and the decomposition of the
phonetic (a-f-t)-signals into collective modalities;

b) The design of the g-magnitude and p-direction of a
p-phoneme vector; and

¢) the design of the multidimensional auditory Nodal Map
Module.

However, as stated earlier, the most unique improvement is
the solution offered, in the design of the auditory interface
circuit, of the one to one mapping methodology of the acous-
tic signals onto a reasonable phonetic structure. Human-like
high 1Q-AI is highly dependent on ‘hearing’ and ‘compre-
hending’ verbal speech, and the capability to respond ‘ver-
bally’ to the ‘heard’ speech. Without a one to one mapping of
the acoustic signals onto a reasonable phonetic structure, such
human-like high 1Q-Al becomes impossible.

The interface circuit is unique to this invention because the
RRC is a unique element of the invention. However, auditory-
verbalization systems, an important element of the RRC-
verbal-phoneme sound generator interface circuit, are SOA
and used commercially in the field of communication. The
inventors discovered that present day auditory-verbalization
systems were not suitable for high 1Q-AI systems. Present
day operational auditory-verbalization systems don’t even try
to solve the acoustic-signal-phonetic-structure mapping
problem. On the other hand, the programming methodology
presented in the design of the RRC-interface circuit comes
very close to solving, in a one-to-one manner, the acoustic
mapping onto a unique phonetic structure.

9. Quantifying the Amount of Programming Required to
Reach Human-Like Levels of Al

With the internalization process in place, achieving
human-like intelligence of the sensory data is dependent on
the level of training or programming performed on the RRC-
controlled robot. It is a software development involving rela-
tions and correlations between signals wherein “robotic self-
knowledge,” “robotic awareness,” “robotic comprehension,”
“robotic visualization,” and “sensation” generation within the
RRC, all refer to the level of training-programming of the
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various modules of the RRC. An auditory RRC-system
achieves human-like levels of intelligence by relating, repeat-
ing, correlating, prioritizing and remembering the auditory
input data, rather than computing and solving speech process-
ing problems associated with the auditory input data.

Quantifying the amount of programming required to reach
a given level of human-like Al is simply a matter of counting
the number of relations and correlations, associated with each
noun, adjective, and verb present in the vocabulary of the
robot (the 50,000 word lexicon), that is to be programmed
into the system. For example, to develop a high 1Q level of
intelligence about the word ‘apple’ one needs to program the
image of an apple with the word apple, with the verbal dic-
tionary definition of an apple, with the encyclopedic data
(which could be verbally repeated by the Robot), associated
with the word and visual image of an apple, with the feel,
color, shape etc. that differentiate the various varieties of
apples (crab-apple Washington-delicious apples), with the
smell of an apple, with the taste of an apple, etc. Human-like
levels of Al generally involve hundreds of thousands of rela-
tions and correlations programmed into the system. The
inventors believe that without a relating-correlating auditory
RRC system, present day calculating computers would be
overwhelmed by the amount of programming code that would
be required to achieve human-like, high I1Q-levels of Al

In contrast, the designers of most other intelligent-com-
puter systems have never quantified the level of intelligence
programmed into their system by the number of relations and
correlations between the various sensory data inputs. Most
computer auditory-verbalization systems operate by comput-
ing, calculating, and solving problems related to the input
data, and aimed at obtaining a particular set of solutions for
each particular set of input data. If such a computer system
were to be programmed to reach human-like levels of AL the
amount of programming code would be orders of magnitude
greater than the countable number of relations and correla-
tions described above. In addition other computer systems
rarely centralize and store all the relations and correlations
into a self-knowledge coordinate frame.

Commercialization of the Auditory RRC-Humanoid
Robot Technology

The commercialization of the Auditory RRC-Humanoid
Robottechnology is described in the following three sections:
The first section describes the commercial uses of the Audi-
tory RRC-Robotic system. The second section describes the
commercial uses of an RRC-auditory-verbalizing answering
machine system, a stand-alone RRC that has been fully
trained (experientially—with the robotic body) as an audi-
tory-verbalizing answering machine system. The third sec-
tion describes the business model for the commercial devel-
opment of the invention (licensing and joint ventures).

Commercial Use of an Auditory RRC-Humanoid
Robot

In the following two parts the list of tasks performed by an
auditory RRC Humanoid robot are divided into two parts.
Part 1 is the same list of tasks performed by the visual RRC-
Humanoid Robot (described in co-pending U.S. patent appli-
cation Ser. No. 14/253,861), except that in this case there is a
maximum amount of verbal communication between humans
and Robot. Part 2 is a list of tasks performed by an Auditory
RRC-Humanoid Robot that comprehends (understands) ver-
bal speech, may communicate verbally as does a human, and
may perform all the tasks that a human with a college or
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graduate school degree is capable of performing (read, write,
comprehend verbal speech and respond to verbal speech).

Part 1—the Tasks Performed by a Procedurally Trained
Auditory RRC-Humanoid Robot.

An auditory RRC-Humanoid Robot may perform all the
tasks performed by the Visual RRC Humanoid Robot, with
the addition that the Robot now has verbal communications
skills and can therefor perform all procedural tasks more
efficiently and effectively (minimize errors). An auditory
RRC-Humanoid robot may be used to perform practically
all-skilled manual labor and hand manipulation tasks per-
formed by humans. For example, expert cook, expert waiter
(serving food collecting and washing dishes) supplemented
with communication with humans. In a household, a visual
humanoid robot may perform all tasks of a household servant
(supplemented with verbal communication skills), handy-
man, guard, or babysitter. In the medical care/nursing field an
Auditory RRC-Humanoid Robot may serve as a nursing com-
panion, helper, expert medical nurse, or an expert doctor (well
trained in communicative bed-side manners). In a skilled
labor environment a visual humanoid robot may perform the
tasks of engine maintenance and repair, jewelry making,
watch making and repair, skilled operator of all equipment
such as welding, assembly, polish, paint, and all the tasks
associated with building and repair (foundation, framing,
electrical, plumbing, and appliances). In an office, a visual
robot may perform the tasks of a stock-boy, internal mail
delivery, guard, or errand boy. In the transportation field, a
visual humanoid robot may perform expert driver tasks for
cars, trucks, buses, trains, ships and airplanes. For the Depart-
ment of Defense, a visual humanoid robot may be used for
surveillance, monitoring, carrying heavy equipment, or as an
expert rifleman, or expert fighter (with boots on the ground).
For NASA, a visual humanoid robot may be used for plan-
etary and lunar exploration, astronautic space mission, and
long duration missions to the stars.

Part 2—List of Tasks Performed by an Auditory RRC-
Humanoid Robot that Comprehends (Multiple Correlations)
Verbal Speech, and Responds Verbally.

An auditory humanoid robot may be used to perform all
tasks that humans perform that including all tasks that require
verbal communication, reading and writing skills. Therefore,
an auditory humanoid robot may perform all the tasks that a
visual humanoid robot can perform with the enhanced capa-
bility to communicate verbally matters relating to the tasks
performed. In addition, the auditory humanoid robot may
perform all expert and professional task that require verbal
communication, reading, and writing skills. For example in
the expert arena, an auditory humanoid robot may function as
a receptionist, clerk, or errand boy. In the professional arena,
an auditory humanoid robot may function as an engineer,
chemist, doctor, lawyer or dentist.

Human-like intelligence levels have never before been pro-
grammed into a computer system. RRC-humanoid robots are
highly intelligent, high 1Q-machines that pass the “Turing
Test” with tactile and vestibular sensors that ‘feel” and bal-
ance, a visual system that visualizes and “sees,” an auditory
system that hears and understands human speech, and a ver-
bal-phoneme sound generator that speaks verbally and
responds intelligently to the “heard” verbal sounds. The pre-
liminary training of the RRC-robot is analogous to human
education in grades K-1 to K-12. The programming-proof
that the RRC-system has achieved human-like intelligence
levels is identical to the performance of a Turing Test, wherein
behaviorally, in its capability to ‘feel,” ‘see,” manipulate
objects, ‘hear,” and ‘speak,” the RRC-humanoid robots are
indistinguishable from human.
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The inventors believe that RRC-humanoid robots have the
potential of revolutionizing the 21st century. The design,
development and manufacture of intelligent humanoid robots
may become a major industry, serving individuals, corpora-
tions, and local, state, and federal governments. RRC-con-
trollers exhibiting human-like and super-human-like levels of
intelligence will revolutionize the 21st century so that human-
oid RRC-robotic systems are as common as computers.

Commercial Use of the RRC-Auditory Verbalizing
Answering Machine System.

A stand-alone RRC-auditory-verbalizing answering
machine system may be formed by combining 3-parts of fully
trained (experientially—with the robotic body and limbs)
auditory RRC-Humanoid Robot. RRC-auditory-verbalizing
answering machines consist of the following 3 parts of a fully
trained auditory RRC-Humanoid Robot; Part 1 is the RRC
system, part 2 is the auditory RRC recording monitor (pick up
microphones and the interface spectrum analyzer), and part 3,
is the verbal-phoneme sound generator. Training of the three
parts is performed on the total RRC-Humanoid robotic sys-
tem (sensors plus a complete robotic body and limbs). The
trained expertise and verbal IQ-Al level of the system may be
tailored to the answering machine requirements of specific
customers who may need specialized levels of Al. A fully
trained RRC-auditory-verbalizing answering is sold sepa-
rately (without the robotic body and limbs) as a stand-alone
system.

RRC-auditory verbalizing answering machines may func-
tion as telephone answering machines, as a receptionist in any
office, commercial organization, non-profit organizations
(museums, art galleries, etc.), as a receptionist and guide to
any federal, state and local governmental organizations, and
as a search engine that is accessed verbally and responds
verbally to any query.

RRC-auditory-verbalizing answering machines are unique
in that they are the only ones that use an internal one-to-one
mapping methodology of the acoustic signals onto a reason-
able phonetic structure. As a result, for example, the preferred
embodiment system is designed to recognize any word
present in a 50,000-word lexicon, and any sentence made up
of'those words. This leads to an accuracy of identification and
recognition of words and sentences approaching 100%. Fur-
thermore, with the search engine access rule the system may
be programmed to respond verbally and appropriately to any
query.

Business Model for the Commercial Development of the
Invention: Licensing and Joint Ventures.

The invention described herein generally require, for train-
ing purposes, a human-like mechanical body and limbs, with
input data coming from 6 human-like recording monitors
(tactile, vestibular, visual, auditory, olfactory and gustatory
sensors), so that the system may be programmed to reach
human-like levels of artificial intelligence. The inventors
have a strong capability in the commercial design and devel-
opment of the RRC-controller, the 6 human like recording
monitors, the interface design between the RRC and the
recording monitors, and the programming of the system so
that it may reach human-like levels of artificial intelligence.
However, the inventors do not have a strong capability in the
commercial development of the state of the art human-like
mechanical body and limbs, the power supplies and the struc-
ture, motors and gears that make up the mechanical robotic
body. Therefore, the inventors plan to license their invention
or joint venture with a corporation that can fund the design,
development, and manufacture the robotic body, controlled
by the RRC-controller. Joint venturing and licensing activi-
ties will begin as soon as the invention is patented.
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Lexicography

The lexicography section is organized alphabetically with
two section breaks denoted by using bold face type on the
items to be defined. One section break, collects all the defi-
nitions that begin with the word ‘human-like.” The other sec-
tion break, collects all the definitions that begin with the
words ‘quantitative measure.”

Auditory Collective Modalities

Auditory collective modalities are groupings of hair-like
fibers that are tuned selectively to some distinctive features of
the spectrographic (a-f-t) frequency pattern. Among the dis-
tinctive features are segments of frequency changing in time
(FM sweeps or glides) or band-pass noise bursts with specific
center frequency and bandwidth.

Auditory Cues

Auditory cues refers to the additional data that must be
abstracted from any verbal interaction between the RRC-
system and a human in order to solve the problem of convert-
ing the acoustic properties of the input signal into an under-
standable phonetic structure (solving the co-articulation
problem). The conversion of the perceived acoustic spectro-
scopic properties (a-f-t-diagrams) of language into an identi-
fiable phonetic structure requires additional data in addition
to the spectroscopic (a-f-t)-data. Auditory cues denote the
additional data required in order to map the phonetic structure
of an utterance into acoustic spectroscopic a-f-t-data. The
auditory cues used in this disclosure include a) visual data of
speaker’s body language, lip movements and recognition-
identification of the characteristics of the speaker, and b)
acoustic phonetic context such as “emotion laden” intonation,
speaking rates and loudness.

Auditory RRC-Humanoid Robot.

A visual RRC-humanoid robot equipped with an auditory
RRC recording monitor with a human-like interface and a
verbal-phoneme sound generator, may be called an auditory
RRC-humanoid robot.

Auditory RRC-Verbalizing Answering Machine System.

(Also denoted as a RRC-answering machine) A stand alone
RRC-answering machine may be formed by combining 3
parts of a fully trained Auditory RRC Humanoid Robot. The
RRC-Verbalizing answering machine consists of the follow-
ing three parts: a) The auditory apparatus stage, b) The audi-
tory Interface Circuit Stage, and ¢) The RRC processing
stage. The answering machine does not include a robotic
body or limbs.

Auditory Nodal Map Module

The auditory nodal map module is a multidimensional p-q
function space wherein the q represents the spectrographic
characteristics of the phoneme sound and the p is a control
signal that activates one of the 130 phoneme sounds gener-
ated by the verbal-phoneme sound generator. In the auditory
p-q multidimensional space, the p-vector represents one of
130 different direction (to an adjacent node), wherein each
p-direction activates one of the 130 phoneme sounds gener-
ated by the verbal-phoneme sound generator. The dimension-
ality of the p-space must be sufficiently high so that at least
130 different adjacent nodes surround the initial position of p.
And each transition to an adjacent node represents one of the
130 different phoneme sound generated by the verbal-pho-
neme sound generator.

Behavioral (or Experiential) Programming

(Also denoted as experiential programming) Behavioral
programming techniques are utilized on all RRC-humanoid
systems to achieve high levels of Al for the identification,
recognition, visualization or comprehension of the input sen-
sory patterns. Behavior programming is experiential in that
the system relates, correlates, prioritizes and remembers
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input patterns by performing manual dexterity manipulation
tasks on the visualized objects and locomotion tasks guided
by the visualized objects. For example, the behavioral pro-
gramming technique employed for the self location and iden-
tification self-knowledge coordinate frame is an itch scratch
methodology, wherein the robot is fully trained and remem-
bers how to a) reach and touch (scratch) all points located on
the surface of the robotic body, and all points in the near space
surrounding the robotic body, b) to identify and locate all such
points, and ¢) to identify and locate all the “end joint” body
parts (ends of fingers, elbow, knee etc) used to scratch all the
itch points. When the level of training reaches the threshold of
“self Knowledge,” the self nodal map and associated TSMs
will facilitate the robotic identification and recognition of all
body parts, and the navigation of all moveable parts of the
robot towards any and every itch point located on the surface
of'the robotic body and all points in the near space surround-
ing the body.

Cause Vector

Also denoted as a p-vector, p-field data, or cause vector
space: as used herein, a “cause vector” includes those control
signals (such as inputs to a motor control) that are used to
cause spatial transitions, adjust optical or other sensors, and
generate sound in the verbal-phoneme sound generator. Gen-
erally, cause vectors are related to actions taken by the robot.

Collective Modality of a Group of Sensors

As used herein the “collective modality” of a group of
sensors is the collective-sensation generated when a collec-
tive or group of sensor-receptors, made up of individual
receptors that have the same modality, are stimulated simul-
taneously. For example the composite modality of the CCD-
arrays is a retinotopic organization of receptors that have
tri-chromatic collective modality, a monochromatic low tran-
sient response collective modality, and a monochromatic high
transient response collective modality. For example, the tri-
chromatic collective modality gives rise to the sensation of
color, whereas the retinotopic organization of the individual
tri-chromatic receptors generates a higher resolution image
and assures that the color is applied to the correct part of the
image.

Comprehension (Robotic)

Robotic “comprehension” is a higher level of “recogni-
tion” wherein the robot relates and correlates the signal to
other signals. In order to “comprehend” the signal it must be
related and co-related to signals activated at a different time or
originating from a different source. (For example the robot
may be trained to identify an environment wherein it suffers
many sharp blows as a bombardment with rocks, or lighter
scratches (for example caused by a swarm of bees)). In each
case comprehension is achieved if the robot may be trained to
accurately recognize the environment and takes appropriate
action that proves that it accurately “comprehended” the
meaning of all the related and correlated signals. (For
example the robot may shield itself either from a bombard-
ment of rocks or a swarm of bees). Higher levels of compre-
hension are achieved by relating and correlating the signal
with a large number of other signals obtained at different
times or from different sources. Proof that a higher level of
comprehension has been achieved is obtained by training
the robot to respond accordingly to all the related and corre-
lated signals (for example the robot may make a decision
whether -fight or flight- is the accurate reaction based on the
related and correlated data).

Daisy Chains

As used herein, a “daisy chain” is a “line dance” that
includes a repetitive-sequential array of a large number of
simple sequences of cause vectors.
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Declarative Hierarchical Task Diagram (DHTD)

The Declarative Hierarchical Task Diagram (DHTD) is the
top level specification for a HTD-system that includes a ver-
bal-auditory search engine among the top level search
engines located at the top of the hierarchy.

Declarative Memory System

The programmed/trained TSMs listed in the DHTD, gives
the robot the capability to “remember how” to perform all the
auditory sub-tasks listed in the DHTD. The declarative
memory system includes a robotic capability to a) repeat, read
and write all words and sentences presented go the robot, b)
comprehend and identify and describe verbally all nouns,
adjectives, verbs and adverbs that are presented to the robotic
visual and tactile systems, and ¢) perform robot-human con-
versation with comprehension. In the preferred embodiment,
the declarative memory system within the controller is dis-
tributed among the various TSM-pattern recognition circuits
listed in the DHTD.

Declarative Multi-Tasking RRC-Robot

A declarative multi-tasking RRC robot is a robotic system
designed and trained by a Declarative Hierarchical Task Dia-
gram (DHTD).

Effect Vector

(Also denoted as g-vectors). Effects vector space or g-field
data: as used herein, “effect vectors” are signals received
from a set of sensors used to monitor the external and internal
environment of the robot. The external environment is
received by an array of pressure transducers, pick-up micro-
phones, optical devices and other sensors that are incorpo-
rated into the robotic system. The internal sensors receive
internal data such as the current flow and voltage associated
with the motors and sensory systems, the charge in one or
more batteries, the lubrication of moving parts and other
information that reflect the internal state of the robot. In the
preferred embodiment, the effect vectors frame rate is gener-
ally determined by the frame rate of the visual video q field
data. A specific effect vector often labeled g-final, defines a
destination node associated with a particular task initiating
trigger.

Frame Rate & Frame Period

As used herein, the “frame rate” refers to the operational
speed of the relational robotic controller (RRC). The frame
rate and frame period is fixed in the PHTD, and is variable in
the DHTD. The “frame period” refers to the time duration of
each frame (See the definition of variable frame rate & frame
period used in the DHTD). In the Procedural HTD, the control
signal output rate of the RRC is limited to a maximum of one
p vector control signal leading to a traversal to an adjacent
node, per frame period. Whereas, the Sequence Stepper Mod-
ule generates a long sequence of control signals during each
frame period that “plans” a navigational path to a destination
node, only one motor control p signal is generated by the
control signal output during each frame period. (The RRC
does “end point planning” at each step of its motion.) See the
definition of variable frame rate & frame period used in the
DHTD.

Hierarchical Task Diagram (HTD)

The hierarchical Task Diagram (HTD) is the top level
specification of a RRC-system. The HTD consists of an hier-
archical-pyramidal listing of the tasks performed by the
RRC-system. Sensory search engines are located at the top of
the hierarchy. The search engine searches the input sensory
signals for signal patterns that may be identified as TIT.
Identification and prioritization of the TITs is performed by
TSMs that are associated with each of the tasks listed in the
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HTD. The programming-training of a RRC-system is a pro-
cess of training each of the TSMs associated with all the tasks
listed on the HTD.

Human-Like (General Definition).

The term ‘human-like’ is applied to the robotic body and
limbs, to the robotic sensors and to a human-like control
system, which has been selected in the preferred embodi-
ment, to be a RRC-controller. Human-like robotic body and
limbs consist of a bipedal, two handed, 5-fingers per hand
robot controlled by an RRC-controller. Human-like sensors
consist of electro-mechanical analogues of the 6 human exter-
nal sensors (tactile, visual, auditory, olfactory, gustatory, and
vestibular (balance) sensors).

Human-Like RRC-Recording Monitors

The recording monitors and the input signals generated by
them are human-like if a) the recording monitors operate like
the human-like receptors that are analogous to one or more of
the five human sensory receptors (tactile, visual, auditory,
olfactory and gustatory), and b) the sensitivity, intensity, and
range of the signals generated by the recording monitor are
specified to be the same as the sensitivity intensity and range
as the human sensory receptors.

Human-Like Artificial Intelligence (AI) (General Defini-
tion).

A human-like levels of Al may be achieved by any com-
putational system that adheres to the following six require-
ments:

The robotic controller must relate, correlate, prioritize and
remember the sensory input data.

The robotic controller must be programmed to form a
“self-identity, in the form of a centralized self location and
identification coordinate frame.

Contextual self location and identification ‘knowledge’
must be programmed into the system by relating all other
sensory data to the self-knowledge-self location and identifi-
cation coordinate frame.

Human like intelligence is gained only from the human-
like sensors.

Human-like intelligence is experiential intelligence. The
robot must be behaviorally programmed with a memory sys-
tem that remembers the experiences of the robot throughout
its lifetime.

Human-like intelligence may be gained only by a mechani-
cally human-like RRC-Humanoid Robot.

Human-Like Artificial Intelligence (AI) Levels of the
Visual RRC Recording Monitor

A human-like level of intelligence is achieved when the
signals and/or visual patterns a) are a high fidelity 3-dimen-
sional representation of the objects present in the FOV of the
recording monitor, b) are constantly monitored throughout
the operational lifetime of the visual system, c) are fully
related and correlated and internalized into the self-knowl-
edge nodal map module, and d) are fully trained to move
body, limbs, or activate sound generators so that different
actions (or the addition of sounds, smells and tastes) difter-
entiate, distinguish, identify and recognize the location and
character of 3-dimensional forms and shapes, and the difter-
ent colors and textures of all the objects in the FOV. When a
human-like level of intelligence is achieved by the visual
RRC-recording monitor, the robot is said to have a “visual-
ization” capability, a visual awareness capability, a “seeing”
capability, and/or a capability to “comprehend” the visual
objects present in the FOV of the recording monitor.

Human-Like Artificial Intelligence Levels.

Only RRC-robotic systems equipped with 2 of more of the
5 human-like external sensors, and that have a self location
and identification (self-knowledge) module, may achieve
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human-like intelligence levels. Non-verbal human-like intel-
ligence levels may be gained by a RRC robot equipped with
mechanical and visual sensory recording monitors that simu-
late the human tactile receptors and visual sensors. Higher
levels of human-like intelligence may be achieved by adding
auditory, olfactory, or gustatory sensors. A robot equipped
with tactile and visual sensors may be called a visual RRC-
humanoid robot. A visual RRC-humanoid robot equipped
with auditory sensors and a verbal-phoneme sound generator
may be called an auditory RRC-humanoid robot.

Human-Like Intelligence Levels-Visual

When the visual sensors constantly monitor the environ-
ment around the robotic body, it may be possible to achieve
human-like intelligence levels for the visual signals by relat-
ing the visual signals to self-knowledge and control of limbs.
Visual monitoring and self-knowledge of the visual signals is
analogous to a level of intelligence commonly called “seeing”
or “visualizing” the visual signals.

Human-Like Intelligence Levels-Auditory

Human-like Al levels for the auditory recording monitor
and associated verbal-phoneme sound generator are achieved
by relating auditory and verbal sound signals to the visual
signals, to the self-knowledge signals and to the control of
limbs. Self-knowledge of the auditory signals and the verbal
signals generated by the verbal-phoneme sound generator is
one of the prerequisite steps that lead to a level of intelligence
commonly called “hearing with comprehension” and “ver-
bally responding with comprehension” to the auditory signals
and the signals generated by the verbal-phoneme sound gen-
erator.

Human-Like Intelligence Levels—Other Sensors.

The same can be said for the olfactory sensor (a modified
gas chromatograph) leading to intelligent “smelling” and the
gustatory sensor (a modified wet spectrometer) leading to
intelligent “gustatory tasting.”

Human-Like Interface.

The design of the interface of the RRC-monitor may be
human-like when the input sensors of the RRC are human-
like. The five human-like mechanical sensors are those analo-
gous to the human tactile, visual, auditory, olfactory, and
gustatory sensors. In order to achieve a human-like interface
the mechanical human like sensors must be designed with the
following sensitivities, operational ranges and intelligence
levels:

Tactile sensors must respond to pressure (ranging from
light to high), temperature (ranging from warm to cold),
high pressure (causing injury to the surface of the robot
or pain to the human), and light flutter (senses vibrations
or light breeze). In order for the tactile sensors to be
human-like they must have the sensitivity and opera-
tional range of a human sensor.

Visual sensors operate in the wavelength range between
4000-8000 angstroms. The sensors must form a 3D pho-
tometric image which is a high fidelity representation of
the objects present in the FOV of the visual sensors. In
order for the visual sensors to be human-like the RRC-
system must be capable of “visualizing” the trio-chro-
matic 3D-photometric image and prove that it is capable
of identifying, recognizing and comprehending the col-
ored photometric image.

Auditory sensors operate in the audible sound frequency
range of up to 20,000 cps. In order for the sensors to be
human-like they must be capable of identifying, recog-
nizing and comprehending human verbal speech and
music. An auditory RRC monitor may operate with a
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unique system for performing speech processing (iden-
tification and recognition, and comprehension of verbal
words and sentences).

Olfactory sensors must respond to the same “smells” that
humans respond to. The sensor may be a gas spectrom-
eter that generates a unique spectral decomposition for
each “smell” associated with a gas sample. In order for
the gas spectrometer sensor to be human-like, it must
interface with the RRC-system and prove that it is
capable of identifying, recognizing and comprehending
the “smells” picked up by the spectrometer.

Gustatory sensors must respond to the same “tastes” that
human palate responds to. The sensor may be a wet
spectrometer that generates a unique spectral decompo-
sition for each “taste” associated with food, drink, or any
other object placed in the input chamber of the spec-
trometer. In order for the wet spectrometer sensor to be
human-like, it must interface with the RRC-system and
prove that it is capable of identifying, recognizing and
comprehending the “tastes” picked up by the spectrom-
eter.

Humanoid RRC Robot. See RRC-Humanoid Robot

Identification (See “Robotic Identification™).

Robotic “identification” of a signal is a level of intelligence
wherein the RRC-system is trained, or programmed to distin-
guish the source of the signal and the presence or absence of
an activated signal (with zero activation defined as no signal
whatsoever).

Internalization of the Data.

“Internalization” of the data is achieved by relating and
correlating the data to the self-knowledge TSM-memory
module, of the “self locating and self identifying robot,”
relating and correlating each and every input data signal (tac-
tile, visual, or auditory signals) with each other, and relating
and correlating each and every input data signal with each and
every output-control signal generated by the RRC-controller.
It is the internalization of all the input data that allows the
RRC-robot to identity, recognized, visualize and comprehend
the input signal. Internalization means that the data from each
of the sensors must be related and correlated with the self-
knowledge memory module in a manner such that the robot
develops self-knowledge of the visual data, the auditory data,
the olfactory data, and the gustatory data. With the internal-
ization process in place, achieving human-like intelligence of
the sensory data is dependent on the level of training or
programming performed on the RRC-controlled robot. It is a
software development involving relations and correlations
between signals wherein “robotic self-knowledge,” “robotic
awareness,” “robotic comprehension,” “robotic visualiza-
tion,” and “sensation” generation within the RRC, all refer to
the level of training-programming of the various modules of
the RRC.

Line Dance

As used herein, a “line dance” is a preprogrammed
sequence of cause vectors that are used repeatedly. Line
dances are particular useful in the development of tools for
performing useful actions associated with those sequences.

Machine Like Interface.

The design of the interface of RRC-monitors are machine-
like when the sensors themselves are not human-like or when
the sensors are human-like but operative in a sensitivity range
that diverges greatly from the human-like sensor sensitivity
range. For example radar, lidar, sonar, electromagnetic sen-
sors operating in the microwave, radio or communication
frequency bands are not human-like sensors. Examples of
human-like sensors that operate outside of the human sensors
sensitivity and range are visual sensors that operate in the
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x-ray, far ultra violet and infrared portions of the spectrum, or
telescopic sensors and microscopic sensors that operate in the
4000-8000 angstrom spectral range.

Memory System within the RRC

The programmed/trained totality of TSMs associated with
and listed in the HTD, represent a memory system within the
controller that remembers the procedure for performing the
various subtasks listed in the HTD.

Modality of'a Sensor

As used herein, the “modality” of a human-like sensor is
analogous to the biological modality of a receptor (biological
sensor). It is the sensation that is generally associated with the
sensor-receptor. For example the modality ofa pressure trans-
ducer is the “feeling” of touch-pressure. The modality of a
single visual-receptor (a single CCD (charge coupled
device))is the sensation of a pinpoint of light. The modality of
an auditory microphone tuned to a single frequency is the
sensation of a sound generated at the pitch determined by the
tuned frequency.

Nodal Map—Also Abbreviated as NMM (Nodal Map
Module)

As used herein, a “nodal map” is a correlation network that
maps a relationship between a set of cause vectors (denoted
herein as p vectors) and a set of effect vectors (denoted herein
as q vectors). The configuration of the nodal map may be in
the form of a multi-dimensional Euclidean space, or a multi-
dimensional function space of any dimensionality whatso-
ever, as long as neighboring nodal points in that space are
assigned to adjacent positions along the coordinates of the
space. Each node in the nodal map is assigned a specific set of
multi-dimensional pq vector pairs, which may be expressed
in tabular form, with one pq table assigned to each node.

Pavlovian or Conditioning Programming Techniques

As used herein, a “pavlovian programming technique” is a
conditioning learning technique that includes a procedure for
programming the invention to convert a temporally adjacent q
field that is present near, or in conjunction with, a q TIT, into
anew TIT operating independently of the q TIT. In this way,
the robot “learns” to initiate tasks with new triggers that are
associated with the original q TIT.

Procedural Hierarchical Task Diagram (PHTD)

The procedural HTD is the top level specification for a
HTD-system that excludes a verbal-auditory search engine
from the top level search engines located at the top of the
hierarchy.

Procedural Memory System

The programmed/trained TSMs listed in the PHTD, gives
the robot the capability to “remember how” to perform all the
mechanical displacement subtasks listed in the PHTD. The
design of the procedural memory capability of the RRC-robot
is described by reference to the RRC in U.S. Pat. No. 6,560,
512, issued May 6, 2003.

Procedural Multi-Tasking RRC-Robot

A procedural multi-tasking RRC robot is a robotic system
designed and trained by following the top level specifications
of'a Procedural Hierarchical Task Diagram.

Quantitative Measures of Human-Like Intelligence Levels
(General Definition).

The intelligence of any RRC-robotic system is determined
by the number of sensory recording monitors incorporated
into the RRC-system and the number of relations and corre-
lations programmed/learned into each, and between the dif-
ferent sensory recording monitors. For any recording monitor
included in the field of the invention, in order to achieve
human-like levels of artificial intelligence a robotic system
must first be equipped with a fully trained self-knowledge set
of tactile modules that define the coordinate frame in which
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the robot is operating. Second, the sensory signals arising
from other recording monitors (visual, auditory, olfactory,
and gustatory sensors that simulate the human external sen-
sory system) must be related and correlated with the self-
knowledge modules. In addition to inter-monitor training and
intra-monitor cross training, there are five defined forms of
human-like intelligence that may incorporated into the soft-
ware developments of the RRC. These software develop-
ments quantify the level of training of the recording monitor-
data and the amount of data stored in the associated TSM-
memory system required to reach the defined form of robotic
intelligence. The five forms of robotic intelligence are
“robotic self knowledge,” “robotic awareness,” “robotic iden-
tification,” “robotic recognition” and “robotic visualization
or comprehension” of the input signals. As will be shown in
the following definitions, none of these levels of intelligence
has ever been programmed into a computer.

Quantitative Measure of Robotic Self-Knowledge Level of
Intelligence.

(Determined by the number of relations and correlations
programmed into the system). That number is determined by
noting that robotic self-knowledge is programmed into the
self-location and identification Nodal Map Module and the
Task Selector Module (TSM)-memory system associated
with it. The pressure transducers that are uniformly distrib-
uted on the robotic body constitute the “robotic skin” of the
robot and are used to define the center of gravity of the robot
and the coordinate frame in which the robot is operating.
Initial self-knowledge training, that determines the bulk of
the relations-correlations programmed into the system, is best
described in terms of an “itch-scratch” sequence of actions.
The robot is trained to move all its limbs or other bodily parts
towards any activated pressure transducer (the itch-point)
located on the robotic body and limbs and/or a point in the
near space surrounding the robotic body and defined by the
range of motion of flailing limbs. Robotic self-knowledge is
achieved when the TSM-memory system of the robot is fully
trained and remembers how to a) reach and touch (scratch) all
points located on the surface of the robotic body, and all
points in the near space surrounding the robotic body, b) to
identify and locate all such points, and c) to identify and
locate all the “end joint” body parts (ends of fingers, elbow,
knee etc) used to scratch all the itch points. When the level of
training reaches the threshold of self-knowledge, the self
nodal map and associated TSMs will facilitate the robotic
identification and recognition of all body parts, and the navi-
gation of all moveable parts of the robot towards any and
every “itch” point located on the surface of the robotic body
and all points in the near space surrounding the robotic body.
An RRC-robot that has been trained to this most basic level of
self-location and identification is said to have a self-knowl-
edge intelligence level or is said to have self-knowledge.

Quantitative Measure of Robotic “Self Awareness™ Level
of Intelligence.

(Determined by the number of relations and correlations
programmed into the system). That number is determined by
noting that when tactile sensors that form a protective cover-
ing of the robotic body, constantly monitor the environment
around the robotic body for any possible tactile activation,
then robotic self-knowledge becomes a higher level of intel-
ligence that is called “robotic self awareness™ of the tactile
environment around the robot. Robotic self awareness
coupled with self-knowledge of the tactile sensory data may
lead to a robotic reaction to the data that is analogous to the
human-like reaction to the “feeling” of “touch-pain” associ-
ated with the pressure exerted on tactile mechano-receptors
(pressure transducers). A robotic system is said to be “aware”
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of a sensory activation if the system constantly—that is
throughout its operational lifetime—monitors the environ-
ment for that sensory activation and relates that activation to
the self location and identification Nodal Map Module and
the Task Selector Module (TSM)-memory system associated
with it. A RRC robot trained to the basic level of self-knowl-
edge is said to have robotic awareness of tactile activations
when the system constantly monitors the environment for any
possible tactile activation. In order to ‘be-aware’ of tactile
activations the robot must be trained to distinguish the char-
acteristics of any activation and to respond accordingly. The
methodology for distinguishing different tactile activations is
by training/programming a different motor response for each
different sensory activation. Note that since the visual, audi-
tory, olfactory and gustatory signals must be internalized—
that is completely related and correlated with the “self-aware”
and self-knowledge nodal map modules—then the system
may achieve visual self-awareness (visual-awareness is gen-
erally called “seeing”), auditory self-awareness (auditory-
awareness is generally called “hearing”), olfactory self-
awareness  (olfactory-awareness is generally called
“smelling”), and gustatory self-awareness (gustatory-aware-
ness is generally called “tasting”), of the visual, auditory,
olfactory and gustatory signals.

Quantitative Measure of Robotic “Identification” Level of
Intelligence:

(Determined by the number of relations and correlations
programmed into the system). That number is determined by
noting that robotic identification is a low level of intelligence
associated with training or programming the RRC-robot to
distinguish the recording-monitor-source of the signal (tac-
tile, visual, auditory, olfactory and gustatory) and the pres-
ence or absence of an activated signal (with zero activation
defined as no signal whatsoever). In all cases the recording-
monitor-source of the signal, and the signal itself, if it is
present, must be related to and correlated with the Self-
knowledge nodal map module.

Quantitative Measure of Robotic “Recognition” Level of
Intelligence.

(Determined by the number of relations and correlations
programmed into the system). That number is determined by
noting that robotic recognition is a mid-level of intelligence
wherein the recording monitor signal of the RRC is trained/
programmed with a capability to distinguish and differentiate
the location, intensity or magnitude of the pattern/signal,
assign a priority level to the signal and relate that location,
intensity, or magnitude to the self-knowledge nodal map
module. Having recognized and prioritized the signal, the
robot may be trained to take action dependent on the recog-
nized/prioritized signal. (For example, recognizing the “itch”
point and taking action to “scratch” that point, or recognizing
a high priority or low priority obstacle which may or may not
cause the robot to take action to avoid the obstacle).

Quantitative Measure of Robotic “Comprehension” Level
of Intelligence.

(Determined by the number of relations and correlations
programmed into the system). That number is determined by
noting that robotic comprehension is a high level of intelli-
gence. It includes robotic recognition and additional training
of'the robot to relate and correlate the signal of the recording
monitor to the signals of other recording monitors and simul-
taneously to the self-knowledge nodal map module. In order
for the robotic system to “comprehend” the signal it must be
related and co-related with signals activated at a different time
or originating from a different source, in addition to being
related and correlated to the self-knowledge nodal map mod-
ule. For example, the visual image of an apple may be related
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to the verbal word “apple” and may be correlated with the
dictionary definition of an apple.

Quantitative Measure of Higher Levels of Comprehension
Intelligence.

(Determined by the number of relations and correlations
programmed into the system). That number is determined by
noting that higher levels of intelligence are reached by the
robotic system as more signal data from more sensory moni-
tor sources are related and correlated with each other and with
the self-knowledge nodal map module. By relating visual
data, auditory data, verbal/written words, the verbal words
generated by a verbal-phoneme sound generator, data from a
50,000 word lexicon and encyclopedic data, to the self-
knowledge nodal map module, very high-levels of human-
like intelligence and expertise can be programmed into a RRC
robotic system.

Recognition (See “Robotic Recognition™)

Relational Correlation Sequencer Also Abbreviated as
RCS

Asused herein, a “relational correlation sequencer (RCS)”
include a nodal map and a Sequence Stepper Module that
work together to select the motor control cause signals that
result in navigating a robot through a nodal space to a desired
location. More than one relational correlation sequencer can
be hierarchically arranged or stacked, so as to achieve an
increasingly complex result.

Robotic Comprehension (See “Comprehension-Robotic™)

Robotic Identification.

Robotic identification is a low level of intelligence associ-
ated with training or programming the RRC-robot to distin-
guish the recording-monitor-source of the signal (tactile,
visual, auditory, olfactory and gustatory) and the presence or
absence of an activated signal (with zero activation defined as
no signal whatsoever). In all cases the recording-monitor-
source of the signal, and the signal itself, if it is present, must
be related to and correlated with the Self knowledge nodal
map module.

Robotic Recognition.

Robotic recognition is a mid-level of intelligence wherein
the recording monitor signal of the RRC is trained-pro-
grammed with a capability to distinguish and differentiate the
location, intensity or magnitude of the pattern/signal, assign a
priority level to the signal and relate that location, intensity, or
magnitude to the self-knowledge nodal map module. Having
recognized and prioritized the signal, the robot may be trained
to take action dependent on the recognized/prioritized signal.

Robotic Visualization or “Seeing Knowledge”.

Visualization is a form of knowledge; alevel ofintelligence
programmed into the system. Visualization is commonly
called “seeing knowledge.” Visualization or “seeing’” knowl-
edge is obtained by internalizing all the different colors,
shapes forms and textures into the self-knowledge nodal map
module and learning to move the robotic body, limbs or sound
generators so as to distinguish manipulate and respond to the
different colors, shapes, forms and textures of all the objects
in the FOV. The RRC is trained to perform 3D-real time video
camera visualizations by performing manual dexterity
manipulation tasks on the visualized (“seen”) objects and
locomotion tasks guided by the visualized objects. Based on
the visualized data and the relationship of that data to the self
location and identification coordinate frame, a RRC robot
may be taught to perform all locomotive and limb manipula-
tion tasks that range from driving autos to threading a needle.

Robotic Self-Knowledge Level of Intelligence. See “Self
Knowledge” Level of Intelligence.

Robotic Visual Sensation or “Seeing Knowledge” of the
Photometric Image.

Sensations are forms of knowledge; levels of intelligence
programmed into the system. The robotic visual sensation of
the photometric image refers to the level of intelligence
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gained by the system with regard to the photometric image.
The robotic system is said to have the “sensation” of the
photometric image when the level of intelligence of the pho-
tometric image reaches the “seeing knowledge” or the robotic
visualization level of intelligence. The sensation itself is a
form of seeing knowledge of the 3D photometric image inside
the controller that consists of CCD—electronic pixels distrib-
uted in the 3D-Nodal Map space within the controller. The
pixels making up the 3D-photometric image are a high fidel-
ity representation of the 3D-objects located in the FOV ofthe
cameras. In this sense, the photometric image, a mirror image
of'objects in the FOV, is a “virtual illusion” located within the
controller, and the “sensation” represents knowledge of the
photometric “virtual illusion.” The 3D-virtual image is cali-
brated with, and related to real objects in the FOVs surround-
ing the robot, so that no other measurements need be obtained
in order to manipulate real-objects or avoid real-obstacles
while driving or walking through the 3D-photometric-illu-
sion space.

Robotic Comprehension.

Robotic “comprehension” is a higher level of “recogni-
tion” wherein the robot relates and correlates the signal to
other signals. In order to “comprehend” the signal it must be
related and co-related to signals activated at a different time or
originating from a different source. (For example the robot
may be trained to identify an environment wherein it suffers
many sharp blows as a bombardment with rocks, or lighter
scratches (for example caused by a swarm of bees)). In each
case comprehension is achieved if the robot may be trained to
accurately recognize the environment and takes appropriate
action that proves that it accurately “comprehended” the
meaning of all the related and correlated signals. (For
example the robot may shield itselfin a different manner from
a bombardment of rocks than from a swarm of bees). Higher
levels of comprehension are achieved by relating and corre-
lating the signal with a large number of other signals obtained
at different times or from different sources. Proofthat a higher
level of comprehension has been achieved is obtained by
training the robot to respond accordingly to all the related and
correlated signals (for example the robot may make a decision
whether -fight or flight- is the accurate reaction based on the
related and correlated data).

Robotic Awareness of Tactile Activation.

A robotic system is said to be “aware” of a sensory activa-
tion if the system constantly—that is throughout its opera-
tional lifetime—monitors the environment for that sensory
activation and relates that activation to the self location and
identification Nodal Map Module and the Task Selector Mod-
ule (TSM)-memory system associated with it. A RRC robot
trained to the basic level of self-knowledge is said to have
robotic awareness of tactile activations when the system con-
stantly monitors the environment for any possible tactile acti-
vation. In order to be “aware” of the tactile activation the
robot must be trained to distinguish the characteristics of any
activation and to respond accordingly. A self-knowledge
intelligence level robot that has been trained throughout its
operational lifetime to distinguish and respond to any tactile
activation is said to have robotic awareness of that activation.

Robotic Self Awareness of Visual, Auditory, Olfactory and
Gustatory Activations.

A robotic system is said to be “aware” of a sensory activa-
tion if the system constantly—that is throughout its opera-
tional lifetime—monitors the environment for that sensory
activation and relates that activation to the self location and
identification Nodal Map Module and the Task Selector Mod-
ule (TSM)-memory system associated with it. Thus if the
visual, auditory, olfactory and gustatory signals are internal-
ized—that is completely related and correlated with the “self-
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aware” and “self-knowledge” nodal map module—then the
system may achieve visual self awareness (visual awareness
is generally called “seeing”), auditory self awareness (audi-
tory awareness is generally called “hearing”), olfactory self
awareness (olfactory awareness is generally called “smell-
ing”), and gustatory self awareness (gustatory awareness is
generally called “tasting”), of the visual, auditory, olfactory
and gustatory signals.

RRC-Humanoid Robot

A RRC-humanoid robot, also called a Humanoid-RRC
Robot, is generally equipped with human-like body and limbs
and all, or part of the human-like sensors. Such a robot has the
capability to be behaviorally-programmed to experientially
“feel,” and/or “see,” and/or “hear,” and/or “smell,” and/or
“taste,” just like a human, and have the capability to control
the robotic body and limbs and the verbal-phoneme sound
generator so as to verbalize what it “feels,” “sees,” “smells,”
“hears,” or “tastes”.

rre-Humanoid Robot

As used herein, the lower case rrc (relational robotic con-
troller) is used to denote a controller that is not the patented
RRC, but meets those requirements imposed on the RRC that
allow it to be programmed with human-like levels of Al
(Requirements #1, #2, #3 and #5; See human-like levels of
Al

RRC-Recording Monitor.

RRC-recording monitors consist of a sensory system and
an interface circuit between the sensory system and the RRC-
controller. In this disclosure we distinguish between sensory
systems and interface circuits that are described by a human-
like interface and those described by a machine-like interface.

Search Engine Access Rule

The search engine access rule is a programming rule
devised in order to facilitate the search for an appropriate
response to any query or statement directed at the RRC-
system. The following programming rules have been devised
in order to facilitate the search for an appropriate response to
any auditory input signal: 1) Search the input signal to deter-
mine which TSMs are likely repositories of the appropriate
verbal response. 2) Form a compound set of TSMs wherein
the response may be stored. 3) Utilize the data present in the
input signal and in the compound set of TSMs to home in on
an appropriate response.

Self-Knowledge Intelligence Level, Also, Robotic Self-
Knowledge Intelligence Level.

Robotic self-knowledge is achieved when the TSM-
memory system of the robot is fully trained and remembers
how to a) reach and touch (scratch) all points located on the
surface of the robotic body, and all points in the near space
surrounding the robotic body, b) to identify and locate all such
points, and ¢) to identify and locate all the “end joint” body
parts (ends of fingers, elbow, knee etc) used to scratch all the
itch points. When the level of training reaches the threshold of
“self Knowledge,” the self nodal map and associated TSMs
will facilitate the robotic identification and recognition of all
body parts, and the navigation of all moveable parts of the
robot towards any and every itch point located on the surface
of'the robotic body and all points in the near space surround-
ing the robotic body. An RRC-robot that has been trained to
this most basic level of self location and identification is said
to have a self-knowledge intelligence level or is said to have
self knowledge.

Self-Location and Identification Nodal Map Module.

As used herein, a “self location and identification nodal
map” refers to a pq-nodal map within a Relational Correlation
Sequencer wherein the cause vector (p-vector) is trained to
navigate one movable part of the robot towards any and all
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other parts by use of the tactile sensor effect vectors (g-field).
This is also referred to as “the self nodal map.” The self
location and identification Nodal Map Module (NMM), the
so called itch-scratch NMM, is the central NMM to which all
other NMMs are related. Relations and correlations between
signals are programmed for signals emanating from each
recording monitor, and between signals emanating from dif-
ferent recording monitors. When the signal data from other
recording monitors are related and correlated with the fully
trained central self-knowledge coordinate frame, then the
system may achieve visual self-knowledge, auditory self-
knowledge, olfactory self-knowledge and gustatory self-
knowledge levels of intelligence.

Sequence Stepper Also Abbreviated as SSM (Sequence
Stepper Module)

As used herein, a “sequence stepper” is an element of the
relational correlation sequencer. The sequence stepper deter-
mines a sequence of steps for navigating through a set of
adjacent nodal points in a pg-nodal map that define a
sequence of pq vectors from an initial effects vector to a
destination effects vector.

Super-Intelligent Humanoid RRC Robots.

An additional level of machine-like intelligence may be
gained by any type of humanoid RRC-robot by adding non-
human sensors to the set of human-like sensors. In this case,
the signal data from the non-human sensors may be related
and correlated with data from the human-like sensors and the
self (knowledge) Nodal Map Module, and thereby develop a
higher level of human-like intelligence for the non-human
sensors. Examples of non-human sensors include radar detec-
tors, sonar detectors, GPS detectors, gas chromatograph
detectors, mass spectrometer detectors, electromagnetic
detectors operating outside of the human 4000-8000 Angs-
tom range (for example infrared detectors or X-ray detectors),
or any other human-like sensor operating outside of the
human range of sensitivity. The addition of a non-human
RRC-recording monitor that gives a humanoid RRC-robot an
additional level of machine-like intelligence or expertise may
give rise to a super-intelligent humanoid RRC-robot.

Task Selector—Also Abbreviated as TSM (Task Selector
Module)

As used herein, the “task selector” is trained to select a
particular effect vector from all q effect vectors that are
applied to the robot at the frame rate. The particular set of
effects vectors, selected by the task selector are used as task
initiating triggers (T1Ts). Each TIT is based upon internal or
external q field inputs. The TSMs are the primary components
of'the search engines shown at the top of the HTD. The TSM
performs 3-functions: a) It searches the input effect vectors
for TIT-patterns. b) It identifies and prioritizes the TIT-pat-
tern. And c) It transmits the highest priority TIT to the Nodal
Map Module.

Task Initiating Trigger—Also Abbreviated as TIT

As used herein, a “task initiating trigger” (TIT) includes
the particular set of effects vectors that are identified by the
TSMs. Generally, a TIT consists of two nodes, a q final node
and a q initial node. Those two nodes are used by the
Sequence Stepper Module to determine a sequence of p type
control signals that move the robot from its initial nodal
location (q initial) to the final nodal location (q final). Verbal
auditory TITs consist of a sequence of phoneme sounds that
are identified by the auditory TSMs as verbal utterances. The
trained auditory TSM solves the speech processing coarticu-
lation problem (also known as the segmentation problem) of
mapping the acoustic properties of speech into the phonetic
structure of an utterance.
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Task Interrupt Triggers

Task Interrupt Triggers are TITs with sufficiently high
priority to interrupt the task that the RRC-system is presently
performing.

The TIT-Processing Periods for the Declarative Hierarchi-
cal Task Diagram (DHTD).

The TIT-processing period associated with every TIT-
grouping determines the number of sequential phonemes that
must be processed before the RRC recognizes the total
sequence as a TIT. For the auditory signal, the TIT-processing
period is a grouping of frame periods that correspond to the
number of frame periods per phoneme, per word, per clause,
or per sentence. The selection and identification of a sequen-
tial group of phonemes as a TIT is performed in the TSM
pattern recognition circuit by training the TSM to repeat the
phoneme sounds spoken by the trainer-supervisor (see sec-
tion 6.1 sub-task A-1). For each phoneme, word, clause, or
sentence spoken by the trainer-supervisor, the RRC is trained
to recognize the total word, clause or sentence as a TIT and
accurately repeat the words spoken by the trainer. In this
training mode the TSM may be programmed to determine the
speaking rate of the trainer, the number of frame periods per
phoneme, per word, per clause, or per sentence, and the
spacing between words, clauses or sentences.

Tonotopic Organization

Refers to the locational organization of sound receptors
(vibrating reeds or hair fibers) and the tonal-frequency related
to their location (placement on a basilar membrane). The
RRC-auditory input sensors (vibrating reeds or hair fibers)
are organized by what is known as the “place” principle.
Following the “place” principle, the frequency of a stimulat-
ing sound is mapped onto a location (a “place”) along a
basilar membrane wherein vibrating reeds pick up the incom-
ing sound wave (The hair-like fibers vibrate like the reeds of
an harmonica). The “place” principle is consistent with a
collective modality constraint that may be placed on the
sound receptors and may be the basis for tuning the time rate
of change of frequency pattern (FM-glides) to verbal sounds.

Visual RRC-Humanoid Robot.

A RRC-robot equipped with tactile and visual recording
monitors and a human-like interface may be called a visual
RRC-Humanoid robot.

Visualization (Robotic). See Robotic Visualization

Robotic visualization is also called ‘seeing knowledge.”

Variable Frame Rate and Frame Period.

As used herein, in the Declarative Hierarchical Task Dia-
gram (DHTD), the frame rates and frame periods are variable.
They are highly dependent on the declarative training meth-
odology. While training the declarative TSM to repeat the
words or sentences spoken by the trainer-supervisor, the
selection and identification of sequential groupings of pho-
nemes as TIT-groups is performed. The duration of each word
or clause-grouping (TIT-group) is recognized as the frame
period of the TIT-group, and the rate at which sequential
TIT-groupings are generated is the frame rate of system.

Verbalizing RRC Answering Machine System (Also RRC
Answering Machine)

(See Auditory RRC-verbalizing answering machine). A
stand-alone sub-system of the Auditory RRC-Humanoid
robot that may function as a highly intelligent telephone
answering machine.

As noted above, these descriptions of general meanings of
these terms are not intended to be limiting, only illustrative.
Other and further applications of the invention, including
extensions of these terms and concepts, would be clear to
those of ordinary skill in the art after perusing this applica-
tion. These other and further applications are part of the scope
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and spirit of the invention, and would be clear to those of
ordinary skill in the art, without further invention or undue
experimentation.

BRIEF DESCRIPTION

Some embodiments of the invention include an Auditory
RRC-humanoid robot system that is programmed/trained to
reach human-like levels of auditory and verbal artificial intel-
ligence (A). Each inventive embodiment consists of an audi-
tory recording monitor, a RRC-controller equipped with a
verbal-phoneme sound generator, a mechanical human-like
robotic body, the interface circuit between the recording
monitor and the RRC, and a description of the training pro-
gramming required to reach human-like levels of Al. The
innovativeness of the invention resides in the interface circuit
between the state of the art auditory recording monitor, the
patented RRC controlled robot, and the programming/train-
ing of the system to reach human-like levels of Al. Human-
like levels of Al may be measured by giving a fully pro-
grammed robot an [Q-test, similar to the one given to humans.
Programming the defined level of human-like Al into the
system, constrains the design of the sensory monitors, the
interface circuitry, and the programming of the RRC as fol-
lows: The system must a) identify, recognize and comprehend
all sounds in the audible frequency range from 0 to 20,000
cps, b) differentiate and respond to the sensation of musical
sound, verbal speech and sound noise present in the environ-
ment of the robot, ¢) identify, recognize and comprehend
verbal speech directed at, or spoken to the auditory RRC
recording monitor, d) have the capability to respond intelli-
gently, via a verbal-phoneme sound generator to verbal que-
ries or statements directed at the auditory RRC recording
monitor. In addition, the interface must be designed e) so that
the auditory signals are scaled and calibrated with the input to
the multi-dimensional Nodal Map Module. And 1) finally it is
necessary to prove that the robotic system may indeed iden-
tify, recognize, and comprehend the signals modified by the
interface and presented to the RRC. This proof'is obtained by
training-programming the RRC-system to actually identify,
recognize, comprehend, and vocalize a response to the sig-
nals described in the steps a) to ) outlined above.

Overview of the Three Major Steps in the Design of an
RRC-Humanoid Robot

Major Step 1 includes the defined level of intelligence

A human-like level of intelligence is achieved when the
signals and/or sequential, acoustic phoneme sounds are a)
recognized and identified as phonetic words and sentences in
the auditory recording monitor, or as objects present in the
FOV of the visual recording monitor, b) constantly monitored
throughout the operational lifetime of the system, and c) fully
related and correlated and internalized into the self-knowl-
edge nodal map module. In addition, d) the TSM-memory
systems must be fully trained, as described in the RRC-
patent, to remember all the relations, correlations, and prior-
ity levels associated with them. And e) the system must be
fully trained to move body, limbs, or activate sound genera-
tors so that different actions (or the addition of visual stimuli,
sounds, smells and tastes) differentiate, distinguish, identify
and recognize the acoustic input signals and the visual loca-
tion and character of 3-dimensional forms and shapes, and the
different colors and textures of all the objects in the FOV.

Major Step 2 includes the design of a human-like interface

A human-like interface requires that the design of the audi-
tory apparatus be human-like, and that the sensory system, the
interface, and the RRC can “identify”, “recognize” and “com-
prehend,” the following:
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a) Identify, recognize and comprehend all sound in the
audible range of 0 to 20,000 cps,

b) Differentiate and respond to the sensation of musical
sound, verbal speech and sound noise present in the environ-
ment of the robot, and

c) Identify, recognize and comprehend verbal speech
directed at, or spoken to the auditory RRC recording monitor.

d) Have the capability to respond, via a sound generator to
verbal queries or statements directed at the auditory RRC
recording monitor. In addition, the interface must be designed
so that

e) the auditory signals are scaled and calibrated with the
input to the multi-dimensional Nodal Map Module.

Major step three includes programming proof that the
RRC-system has achieved human-like high 1Q-levels of Al

Finally it is necessary to prove that the robotic system may
indeed identify, recognize, and comprehend the signals modi-
fied by the interface and presented to the RRC. This proof'is
obtained by behaviorally training-programming the RRC-
system to actually identify, recognize, comprehend, and
vocalize a response to the signals described in the steps out-
lined above. This includes the activation of the verbal-pho-
neme sound generator and/or movement of the robotic body
or limbs so as to verbally distinguish and discriminate, or
physically manipulate and respond in an appropriate manner
to all the different sounds impinging on the auditory record-
ing monitor.

The preceding Summary is intended to serve as a brief
introduction to some embodiments of the invention. It is not
meant to be an introduction or overview of all inventive
subject matter disclosed in this specification. The Detailed
Description that follows and the Drawings that are referred to
in the Detailed Description will further describe the embodi-
ments described in the Summary as well as other embodi-
ments. Accordingly, to understand all the embodiments
described by this document, a full review of the Summary,
Detailed Description, and Drawings is needed. Moreover, the
claimed subject matters are not to be limited by the illustrative
details in the Summary, Detailed Description, and Drawings,
but rather are to be defined by the appended claims, because
the claimed subject matter can be embodied in other specific
forms without departing from the spirit of the subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Having described the invention in general terms, reference
is now made to the accompanying drawings, which are not
necessarily drawn to scale, and wherein both Figures and
Tables are briefly described.

List of Figures

FIG. 1 conceptually illustrates a set of recording monitors
included in the auditory RRC-humanoid robot system in
some embodiments.

FIG. 2 illustrates a schematic of the Declarative Hierarchi-
cal Task Diagram (DHTD) in which the TSMs of the auditory
search engine form a declarative memory system within the
RRC in some embodiments.

FIG. 3A is a continuation of FIG. 2, conceptually illustrat-
ing the lower levels of the Declarative Hierarchical Task
Diagram (DHTD) that are denoted by insert A in FIG. 2.

FIG. 3B is a continuation of FIG. 2, conceptually illustrat-
ing the lower levels of the Declarative Hierarchical Task
Diagram (DHTD) that are denoted by insert B in FIG. 2.
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FIG. 3C is a continuation of FIG. 2, conceptually illustrat-
ing the lower levels of the Declarative Hierarchical Task
Diagram (DHTD) that are denoted by insert C in FIG. 2.

FIG. 3D is a continuation of FIG. 2, conceptually illustrat-
ing the lower levels of the Declarative Hierarchical Task
Diagram (DHTD) that are denoted by insert D in FIG. 2.

FIG. 3E is a continuation of FIG. 2, conceptually illustrat-
ing the lower levels of the Declarative Hierarchical Task
Diagram (DHTD) that are denoted by insert E in FIG. 2.

FIG. 4 conceptually illustrates a schematic of the proce-
dural HTD in which TSMs of the procedural search engines
form a procedural memory system within the RRC in some
embodiments.

FIG. 5 conceptually illustrates the auditory RRC Record-
ing Monitor, shown as subsystem 133 in FIG. 1.

FIG. 6 conceptually illustrate the spectral decomposition
of'the auditory input signal in the frequency range o 0-20,000
cps, and in which the input auditory signal is decomposed into
collective modalities that are tuned to the verbal and non-
verbal elements of the input signal, as in subsystem 502 in
FIG. 5.

FIG. 7 conceptually illustrates sample data of a-f-t dia-
gram-Spectrogram of two short bursts of sound represented
by three-sequential p-phonemes a-wa-ft with a directional
vector representation of the p-phonemes input to the p-q
phoneme nodal map module is shown in some embodiments.

FIG. 8 conceptually illustrates samplings of data of a-f-t
diagram-spectrograms showing the magnitudes and direc-
tions of a sequence of multi-dimensional p-phoneme vectors
representing the word “listen” where the vector direction is
shown at the bottom and the functional vector magnitude is
shown at the top with FIGS. 8 A and 8B showing the differing
amplitude and frequency formants for different speakers.

FIG. 9 conceptually illustrates the navigational path in the
multidimensional p-q phoneme nodal map module of a
sequence of p-phonemes associated with a S-phonemes
sequence taken from the list of 120-phonemes shown in Table
2.

FIG. 10 conceptually illustrates a schematic block diagram
that shows the q-visual, g-phoneme flow through the auditory
RRC for comprehension training of the word “apple” in some
embodiments.

FIG. 11 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

LIST OF TABLES

All tables have been incorporated into the text of the speci-
fication. Tables are referred to by their table number.

Table 1 presents an overview of the specification, specify-
ing SECTIONS A, B, C, D and STEPS 1-8.

Table 2 presents a list of English phonemes and phoneme-
combinations utilized in the preferred embodiment.

Table 3 presents the sequence of training steps for pro-
gramming the TSMs of the declarative memory system listed
in FIG. 2.

Table 4 presents the training methodology (Subtask A-1)
for robotic repetition of the words and sentences spoken to the
Robot.

Table SA presents the training methodology (Subtask
A-2a) to verbally read written words and sentences.

Table 5B presents the training methodology (Subtask
A-2b) to verbally spell written words and sentences.

Table 6 A presents the training methodology (Subtask A-3)
to verbally spell words spoken by the trainer-supervisor.

Table 6B presents the training methodology (Subtask A-4)
to typewrite the text read by the robot.
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Table 6C presents the training methodology (Subtask A-5)
to typewrite the words and sentences spoken by the trainer-
supervisor (take dictation).

Table 7A presents the training methodology (Subtasks
B-1) to verbally describe visual image data.

Table 7B presents the training methodology (Subtasks
B-2) to verbally describe experiential data.

Table 7C presents the training methodology (Subtasks
B-3) to have the robot respond to verbal commands that
activate displacement tasks.

Table 8A presents the training methodology (Subtasks
B-4) to verbally describe ‘how to’ perform a previously
learned procedural task.

Table 8B presents the training methodology (Subtask B-5)
to train the RRC-robot to read books and remember their
contents.

Table 8C presents the training methodology (Subtasks
B-6) to comprehend numbers and perform mathematical
computation.

Table 9A presents the training methodology (Subtasks
C-1) to perform robotic conversation.

Table 9B presents the training methodology (Subtasks
C-2)to perform ‘in passing,” non-confrontational robotic con-
versation.

Table 9C presents the training methodology (C-3) to per-
form ‘in passing,” confrontational robotic conversation.

BRIEF DESCRIPTION OF THE COMBINED
FIGURES AND TABLES

Table 1 presents an overview of the design of an auditory
RRC controlled robot. The design is described below as an
8-step process divided into four sections, sections A, B, C,
and D.

Section A is an introductory section that describes the
operation of the RRC. Section B describes the auditory appa-
ratus stages. Section C describes the interface circuit stage,
and Section D describes the programming of the system to
prove that the intelligence level of the system is human-like.
Note: Three additional sections are added at the end of section
D. Section E describes improvements added to the state of the
art by the robotic speech processing capability described
herein. Section F is a description of the underlying electronic
system. And section G differentiates between robotic and
human subjective experiences.

Section A the operation of the RRC, is described by refer-
ence to FIG. 1, FIGS. 2 and 3, and FIG. 4. FIG. 1 illustrates of
the various recording monitors included in the Auditory
RRC-Humanoid Robot (described in the RRC-patent (see
Related Applications)). FIGS. 2 and 3, the Declarative Hier-
archical Task Diagram (DHTD), describes the TSMs of the
auditory search engine. Those TSMs form a declarative
memory system withinthe RRC. FIG. 4, the procedural HTD,
describes the TSMs of the procedural search engines that
form a procedural memory system within the RRC (Figure
taken from the RRC-patent).

Section B the auditory apparatus stage, is described by use
of'two steps (Step 1 and 2), one Figure (FIG. 5), and one table
(Table 2). Step 1, the description of the auditory input micro-
phones, includes FIG. 5 that shows the details of the auditory
RRC Recording Monitor. Step 2, the description of the ver-
bal-phoneme sound generator includes Table 2 that shows the
list of English phonemes and phoneme-combinations utilized
in the preferred embodiment.

Section C the interface-circuit stage, is described, by use of
4 steps (Step 3, 4, 5, and 6a), four figures (FIGS. 6, 7, 8, and
9), and two tables (Table 3 and Table 4). Step 3, the descrip-
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tion of the spectrum analyzer (shown as subsystem 502 in
FIG. 5) and the methodology for the decomposition of the
input signal into collective modalities, includes FIG. 6 that
shows the decomposition of the input auditory signal into
collective modalities tuned to the verbal and non-verbal ele-
ments of the input signal. Step 4, The design of the g-magni-
tude and p-direction of a p-phoneme vector, includes F1G. 7-8
that shows a sample a-f-t diagram Spectrogram of 2 short
bursts of sound represented by 3-sequential p-phonemes
a-wa-ft. Step 5, the design and selection of the multi-dimen-
sional auditory Nodal Nap Module, includes FIG. 8 and FIG.
9. FIG. 8 shows the magnitudes and directions of a sequence
of multi-dimensional p-phoneme vectors representing the
word “listen.” The vector direction is shown at the bottom of
the figure, whereas the functional vector magnitude is shown
at the top of the figure. FIGS. 8A and 8B show the differing
amplitude and frequency formants for different speakers.
FIG. 9 presents the Navigational path of a sequence of p-pho-
nemes associated with a 5-phonemes sequence taken from the
list of 120-phonemes shown in Table 2. Step 6a includes
innovative speech processing techniques for verbal pattern
recognition and phoneme sound generation by use of two
tables (Table 3 and Table 4). Table 3 describes the training-
programming the TSMs of the declarative memory system
and the application of the search engine access rule described
in Section D. Table describes the Training methodology (Sub-
task A-1) for repetition and Babbling. Repetition training
consists of programming the system to repeat phoneme-
sound based words and sentences spoken by the trainer-su-
pervisor.

Section D programming-proof that the interface supports
human-like Al-levels is described by use of three steps (Step
6b, Step 7 and Step 8), one figure (FIG. 10), and eleven tables
(Table SAB, Table 6ABC, Table 7ABC, and Table 8ABC).
Step 6b, the method of Training the RRC to read and write
words and sentences, is described by Tables SAB, and Table
6ABC. Table 5A describes the training methodology to ver-
bally read (subtask A-2a and Table 5B describes the training
required to verbally spell the written words and sentences
(subtask A-2b). Tables 6A, 6B, and 6C describe the training
methodology to verbally spell, typewrite the read text, and
take dictation, respectively of the words and sentences spoken
by the trainer-supervisor. Step 7, the Training of the compre-
hension of words and sentences describing all objects located
in the coordinate space around the robot, is described by use
of FIG. 10 and Tables 7A, B, and C, and Tables 8A, B, and C.
FIG. 10 is a block diagram that shows the q-visual, q-pho-
neme flow through the auditory RRC for comprehension
training of the word “apple.” Tables 7A, B, C describe the
training methodology to verbally describe visual data (sub-
task B-1), and experiential data (sub-task B-2), and program
the robot to respond to verbal commands (sub-task B-3),
respectively. Table 8A, B, C: describes the training method-
ology to command the robot to perform displacement tasks
(sub-task B-3), describe “how to” tasks (sub-task B-4), read
books (subtask B-5) and ‘do arithmetic’ (sub-task B-6). Step
8, training the robotic system to converse intelligently with
humans and other robots, is described with the aid of Tables
9A, B, and C. Table 9A presents the training methodology
(sub-task C-1) to allow the robot to perform robotic human-
like conversation. Table 9B, presents the training methodol-
ogy (Subtask C-2) to perform ‘in passing,” non-confronta-
tional robotic conversation. Table 9C, presents the training
methodology (Sub-task C-3) to perform ‘in passing,” confron-
tational robotic conversation.
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Section E presents improvements to the speech processing
methodology described in this disclosure, due to the high

level of Al incorporated into the system.
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stage (Section C), and the processing of the data stage (Sec-
tion D) is described as an 8-step process for the 3 stages
illustrated in Table 1.

TABLE 1

An auditory RRC controlled robot includes a RRC-controller controlling a
humanoid RRC-system (described in Section A), the auditory apparatus including microphones
and a verbal-phoneme sound generator (described in Section B), an interface circuit between the
auditory input microphones and the RRC-controller (described in Section C), and a processing-
training stage during which the RRC controller is programmed and trained to show that the data-
signals may be identified, recognized and comprehended in a human-like manner (described in
Section D). The design of the auditory RRC-recording monitor is described as an 8-step process

(shown in the Table)

SECTION A
THE RRC SYSTEM STAGE
SECTION B
THE AUDITORY APPARATUS STAGE
STEP 1 STEP 2

AUDITORY INPUT MICROPHONES

VERBAL PHONEME SOUND GEN.

AUDITORY SENSING AND SOUND GENERATION TRANSDUCERS

SECTION C
INTERFACE CIRCUIT STAGE
STEP 3 STEP 4 STEP 5 STEP 6a
SPECTRUM DESIGN OF THE DESIGN OF THE  SPEECH
ANALYZER P-PHONEME AUDITORY PROCESSING:
DECOMPOSITION VECTOR NODAL MAP TRAINING TO
INTO COLLECTIVE MODULE REPEAT SOUNDS
MODALITY
THE INNOVATIVENESS LIES IN THE DESIGN OF THE SPEECH
INTERFACE PROCESSING:
MAPPING
SIGNALS ONTO
PHONETIC
STRUCTURES
SECTION D
TRAINING
STEP 6b STEP 7 STEP 8
SPEECH RECOGNITION  TRAINING TRAINING THE ROBOT TO

TRAINING TO READ

AND WRITE

SPEECH PROCESSING:
MAPPING SIGNALS TO

COMPREHENSION OF CONVERSE

WORDS & SENTENCES INTELLIGENTLY
COMPREHENSION TRAINING. VALIDATION THAT
THE INTERFACE IS HUMAN-LIKE

PHONETIC STRUCTURE

Section F the description of the underlying electronic sys-
tem, as described by reference to an example electronic sys-
tem shown in FIG. 11.

Section G differentiates between robotic and, human-like
subjective experiences, and presents a disclaimer regarding
robotic subjective experiences of the RRC-robot.

DETAILED DESCRIPTION

In the following sections, a preferred embodiment of the
invention is described with regard to preferred process steps
and data structures. Those skilled in the art would recognize
after perusal of this application that embodiments of the
invention can be implemented using one or more general
purpose processors or special purpose processors or other
circuits adapted to particular process steps and data structures
described herein, and that implementation of the process
steps and data structures described herein would not require
undue experimentation or further invention.

A description of the operation of a RRC that supports
programming of human-like intelligence levels into the sys-
tem is presented in Section A, followed by a description of the
auditory apparatus stage (Section B), the interface circuit
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Section A: Operation of a RRC that Supports
Programming Human-Like Levels of Al

The Search Engine Mode of Operation

The auditory search engine is shown in the Hierarchical
Task Diagram (HTD) presented in FIG. 2 and continued in
FIG. 3. The FIGS. 2-3 HTD is the top-level specification for
the performance of all declarative-verbal tasks performed by
the RRC system. The visual and tactile search engines shown
in the HTD of FIG. 4 operate concurrently with the FIG. 2-3
HTD to guide the robot in the performance of the multiple
tasks listed in the two figures. The FIG. 4 HTD was taken
from, and described in U.S. Pat. No. 6,560,512, issued May 6,
2003. Each search engine is used to search the environment of
the robot, as detected on the respective Nodal Map Modules
(NMM), for signal patterns that will be recognized by the
RRC as Task Initiating Triggers, (TIT)-patterns that activate
any of the tasks listed in the FIG. 2-3 or FIG. 4 HTD.

Each of the prime level tasks, shown in FIGS. 2-4, has a
programmed Task Selector Module (TSM) associated with it.
The dominant electronic component of each TSM is a pattern
recognition circuit that is programmed to recognize and pri-
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oritize the TIT-pattern detected by each of TSMs as they
operate on each of the input Nodal Map Modules (NMMs).

The NMMs, subsystems 110 in FIG. 1, are part of the array
of'the self-location and identification NMMs that make up the
RRC-block diagram. Subsystems 130 show the Auditory
g-field multi-dimensional verbal-phoneme NMM and the
visual g-field NMM that is calibrated with the self-location
and identification NMM. System 100, described in U.S. Pat.
No. 6,560,512, issued May 6, 2003, and are shown again in
FIG. 1 of this disclosure. Those descriptions are fully appli-
cable to this disclosure and are utilized extensively in Sec-
tion-D (the RRC-processing stage).

Time scales used in operations and training: Two time
scales are maintained during the training/programming of the
RRC-robot, the training-mode time-scale and the operational
mode time-scale. The training mode time scale is used to train
the robot to perform time-independent tasks when the robot is
not in an operational mode. The operational mode time scale
is measured in real time by the operational clock-time of the
robot. It is also called the real-time of the robot. After the
robot has been trained offline, when the robotic system first
becomes operational, the operational clock of the robot is
initiated. Robotic clock time tracks human clock time and is
activated and maintained throughout the operational lifetime
of the robot.

Programming the Memory System of RRC-Humanoid
Robot: Learning and memory is generally classified as pro-
cedural (or reflexive) if the learning or memory involves
motor skills, and declarative if the learning or memory
involves verbal skills.

A procedural memory system within the RRC: In the pat-
ented volitional multi-tasking RRC-robot, procedural TITs
operate in the muscle-joint NMM, and procedural memory is
the basis for all the control functions of the somatic motor
system. FIG. 4 shows the TSMs associated with the proce-
dural memory system. The programmed-trained TSMs
shown in FIG. 3, give the robot the capability to “remember
how” to perform all the mechanical displacement subtasks
listed under the prime level task. (e.g., a mail delivery robot
“remembers” via the set of prioritized TITs, the procedure for
delivering mail). The design of the procedural memory capa-
bility of the RRC-robot was claimed in U.S. Pat. No. 6,560,
512, issued May 6, 2003.

A declarative memory system within the RRC: FIG. 2-3
shows the TSMs associated with the declarative memory
system. The programmed-trained TSMs shown in FIG. 2-3,
give the robot the capability to “remember how” to perform
all the sub-tasks listed under the 3-prime level tasks. The
declarative memory system includes a robotic capability to a)
repeat, read and write all words and sentences presented to the
robot (T-200 in Table 2-3), b) comprehend and identify and
describe verbally all nouns, adjectives, verbs and adverbs that
are presented to the robotic visual and tactile systems (T-300
in Table 3). And c¢) perform robot-human conversation with
comprehension (T-400 in Table 3). The design of a declarative
memory system for the auditory RRC-Humanoid Robot is
claimed in this disclosure.

The programming of the auditory RRC-robot: Program-
ming/training the RRC-robot is a process of training the pat-
tern recognition circuits of each TSM associated with each
prime level task and all the TSMs associated with the sub-
tasks listed under the prime level task. The pattern recognition
circuits must recognize, identify and prioritize input-signal
TIT patterns that initiate the prime level task and all the lower
priority TIT-sub-tasks that are listed under the prime level
task. The programmed TSMs associated with all the tasks in
FIGS. 2-4, give rise to declarative and procedural memory
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systems within the controller. Training the procedural
memory system of a multi-tasking RRC was discussed and
presented in U.S. Pat. No. 6,560,512, issued May 6, 2003.
Training the declarative memory system of the auditory
RRC-robot is presented in the following sections.

Training-programming the declarative TSMs: Frame rates
and TIT-processing periods: The auditory sound generating
TSMs may be trained in either the supervised or unsupervised
programming mode. The supervised programming mode is
described in this disclosure. In both modes the auditory TSMs
consist of multiple pattern recognition circuits that must a)
identify the phoneme content of the incoming (a-f-t)-signal,
b) group a sequential set of individual phonemes into words,
clauses, and or sentences, ¢) select and identify a sequential
grouping as a T1T, and d) assign a priority level to the selected
TIT. Thus the auditory TSM breaks up the incoming sound
signal into a set of sequential TIT-groups. Each TIT-group
consists of a sequential grouping of phoneme sounds. The
TIT groups are made up of a variable number of sequential
phonemes, depending on whether the group represents an
individual phoneme or the sequential number of phonemes
that make up a word, clause or sentence. The TIT-processing
period associated with every TIT-grouping determines the
number of sequential phonemes that must be processed
before the RRC recognizes the total sequence as a TIT.

The selection of TIT-processing periods and formation of
TITs that distinguish phonemes, words, clauses and sen-
tences: The selection and identification of a sequential group
of phonemes as a TIT is performed in the TSM pattern rec-
ognition circuit by training the TSM to repeat the phoneme
sounds spoken by the trainer-supervisor (see Step 6a, sub-
task A-1). For each phoneme, word, clause, or sentence spo-
ken by the trainer-supervisor, the RRC is trained to recognize
the total word, clause or sentence as a TIT and accurately
repeat the words spoken by the trainer. In this training mode
the TSM may be programmed to determine the speaking rate
of'the trainer, the number of frame periods per phoneme, per
word, per clause, or per sentence, and the spacing between
words, clauses or sentences.

The process of training the declarative memory system of
the auditory RRC: The output of the auditory TSM (sub-
system 153 in FIG. 1) is recorded on the auditory NMM
(subsystem 115 in FIG. 1) and thence to the Sequence Stepper
Module (subsystem 120 in FIG. 1), Control Signal Output
Module (subsystem 160 in FIG. 1), and finally the verbal-
phoneme sound generator (subsystem 143 in FIG. 1) that may
repeat the phoneme sounds spoken by the trainer-supervisor.

The sequence of steps for training-programming the
declarative memory system of the auditory RRC is presented
in Table 3. Training the RRC-robot to repeat words and
clauses, taken from a word lexicon, is presented in part A,
subsystem T-200 of Table 3. The training methodology (Sub-
task A-1) for repetition and babbling is presented in Table 4.
Note that during the learning process the total heard clause
acts as a TIT. Training the RRC robot to relate words to visual
data and to respond with motion to verbal commands is
described in part B, subsystem T-300 of Table 3. The training
methodology to read, write and take dictation (Subtasks A-2,
A-3, A-4, and A-5) is presented in Table 5A, B and Table 6A,
B, C. The training methodology (Subtasks B-1 to B-6) for all
verbal comprehension tasks is presented in Tables 7A, B, C
and Table 8A, B, C. The auditory TITs are generally simul-
taneously associated with, related-correlated, or conditioned
with visual field T1Ts, tactile field TITs, or other sound field
TITs. Finally, training the RRC to receive and recognize
verbal descriptor TITs and then generate an appropriate
response is described in part C, subsystem T-400 of Table 3
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(Robot-Robot or Robot-Human conversation with compre-
hension). The training methodology (Subtasks C-1, C-2, C-3)
to converse intelligently is presented in Tables 9A, 9B, and
9C.

Note also the difference between the g-final TITs used in
FIG. 4 and the auditory TITs of FIG. 2-3. The auditory TITs
often consist of a long sequence of phonemes, words, clauses
or sentences, and the total pattern is not recognized until the
end of the sequence. This is particularly noticeable in the
training of part C, subsystem T-400 of Table 3, and the train-
ing methodology in Table 9A, that describes training the RRC
to respond verbally to verbal speech. The higher-level sound
generating tasks consist of sentences and paragraphs, as
shown in FIG. 2-3. Generally sentences are structured by
multiple TITs, possibly one TIT per word or clause. Thus in
the auditory HTD shown in FIG. 2-3 the TITs are imposed on
the system bottom-up, rather than top-down as in the multi-
tasking HTD shown in FIG. 4. That is, the sequential pho-
nemes form chunks, clauses or sentences before they are
recognized as TITs, and if a verbal response is to be gener-
ated, the total sequential response structured as a TIT must be
activated. Since it is necessary to comprehend the total sen-
tence or paragraph generated by the speaker before one can
respond, it is important that the representation at the top of the
hierarchy, shown in FIG. 2-3, is included in the lower level
TITs used to train the low and mid level hierarchical task
structures. This gives rise to greater variability in the syntac-
tical structure of the sentences and clauses and greater com-
plexity in the implementation of the search engine access rule
described below. The search engine must choose among the
various grammatically acceptable syntactical structures of
sentences and clauses (by use of the access rule) a response
that assures that the sound generation process is a compre-
hensible response to the syntactical structure picked up by the
sound search engine TIT shown at the top of FIG. 2-3.

The pattern recognition circuits of the auditory-TSMs may
be programmed (trained) “off-line” using the training mode
time scale for all the tasks listed in Table 3. The same trained
auditory-TSMs, shown in FIG. 2-3, are utilized during the
operational mode to control and activate the auditory verbal-
phoneme sound generator. The sub-tasks at the bottom of the
hierarchy are the vocabulary words which make up the
“chunks” forming the “line dances” described in U.S. Pat. No.
6,560,512, issued May 6, 2003. In the auditory HTD, the line
dance is made up of a sequence of word (chunks) that is
shown at the bottom of FIG. 2-3. The sequence of words is
initially selected from a 50,000-word lexicon that serves as
the vocabulary of the robot and as a source of auditory sound
field TITs.

Section B—the Auditory Apparatus Stage (Steps 1
and 2)

Step 1—the Auditory Input Microphones

The auditory input microphones are shown as subsystems
501 in FIG. 5. The auditory input apparatus of the auditory
RRC-recording monitor consists of two linear pick up micro-
phones, sensitive to the frequency range of 10 to 16,000 cps,
and a digital spectrum analyzer that is tuned to verbal and
non-verbal collective modalities.

The linear pick up microphones and spectrum analyzers
are placed on the right and left side of the electronic enclosure
of'the RRC. The pick up microphones convert the incoming
sound into an electronic signal characterized by an amplitude,
frequency, time (a-f-t) diagram showing the amplitude and
frequency of the incoming sound as a function of time. The
spectrum analyzer is a pre-processing tool used to help iden-
tify the phonetic content that may be present in the incoming
sound. Generally the spectrum analyzer searches for the time
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rates of change, amplitude and frequency modulations in the
a-f-t diagram (AM and FM sweeps or glides).

An alternative embodiment of the linear pick up micro-
phones is described in this section in order to clarify the
operation of the spectrum analyzer in the next section. In the
alternative embodiment, shown in FIG. 6, the auditory input
system is organized tonotopically such that the frequency of
a stimulating sound is mapped onto a location along a basilar
membrane. The active elements located on the basilar mem-
brane are approximately 16,000 stiff, elastic, reed-like fibers
that are fixed at their basilar ends and free to vibrate (like the
reeds of an harmonica) at the other end. The length of the
fibers increase and the stiffness decreases progressively as
one goes from the base to the apex. Thus high frequency
resonance of the basilar membrane occurs near the base and
low frequency resonance occurs near the apex of the basilar
membrane. The vibrations of the reed like basilar structure
activate microphone-transducers that convert the mechanical
vibrations into an electrical signal with a frequency deter-
mined by the mechanical frequency of vibration of the fiber.

Determination of Sound Frequency:

Every fiber shown in FIG. 6, located on the basilar mem-
brane has a frequency associated with it. Different frequen-
cies may be determined by the position of the fiber along the
basilar membrane (the “place” principle).

Note: The biological hearing system utilizes the “place”
principle for determination of the (tuned) best frequency
(Guyton, A. C. (1991), Textbook of Medical Physiology p.
575). The biological auditory system is organized tonotopi-
cally such that the frequency of a stimulating sound is mapped
onto a location along a basilar membrane within the cochlea
and thence to the mechanoreceptor hair cells. The “place”
principle is consistent with a collective modality of sound
receptors and may be the basis for the definition of frequency
pattern modalities defined in a frequency-time f-t space
within the brain.

In this disclosure, the definition of sound modalities fol-
lows the definitions of the biological hearing system. Since
the fibers operate as sound receptors for the RRC-robot, the
sound perceived by a vibrating fiber is called the modality of
that fiber-receptor. The sound perceived by a set of fiber-
receptors vibrating simultaneously is called the collective
modality of the group of fibers.

Determination of Loudness:

Loudness is determined by the auditory system in at least 3
ways. In a first way, as the sound becomes louder, the ampli-
tude of vibration of the basilar membranes and hair cells also
increases. In a second way, high amplitudes of vibration cause
spatial summation of impulses (on the fringes). In a third way,
certain hair cells may have a higher sound level activation
threshold.

Step 2—the Verbal-Phoneme Sound Generators

The verbal-phoneme sound generator of the auditory RRC
(shown in FIG. 1 as subsystem 143) consists of a sound
generating speaker system that emits an array of distinct and
separate sound types wherein each sound type is called a
phoneme. The control signal that activates the verbal-pho-
neme sound generator is called a p-phoneme control signal
and is part of the array of p-control signals emitted by the
Sequence Stepper Modules of the RRC. Each p-phoneme
control signal generates one ofthe 120 phoneme sounds listed
in Table 2. When a p-phoneme control signal is applied to the
verbal-phoneme sound generator, the speaker system is acti-
vated to generate the distinct phoneme sound associated with
the p-phoneme control signal. This distinct phoneme sound,
when it is picked up by the auditory input microphones of the
RRC is called a q-phoneme sound.

The p-field sound generating capability of the verbal-pho-
neme sound generator is limited to the number of distinct and
separate phoneme-sounds that humans can make. Generally,
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humans may generate almost 100 distinct and separate pho-
neme-sound types. There are 91 phonemes (63 consonants
and 28 vowels) in the International Phonetic Alphabet,
whereas the sounds of the English language require only 44
phonemes. In the preferred embodiment RRC the g-phoneme
field has been selected to consist of 120 individual and com-
binations of English language phoneme sounds. Table 2 pre-
sents the g-phoneme field of the auditory RRC and lists the
individual phonemes and phoneme combinations selected for
the preferred embodiment. The p-phoneme field is also lim-
ited to the 120 distinct and separate control signals, wherein
each control signal applied to the auditory verbal-phoneme
sound generator causes the verbal-phoneme sound generator
to emit one of the 120 phoneme sounds listed in Table 2.

The verbal-phoneme sound generator is designed with the
voice of the trainer-supervisor, by recording each of the pho-
neme sounds spoken by the trainer-supervisor, and taken
from the set of individual phoneme sounds listed in Table 2.
Each phoneme sound type recorded into the verbal-phoneme
sound generator has a distinct p-phoneme control signal asso-
ciated with it. The p-phoneme is the control signal that, when
applied to the verbal-phoneme sound generator, will gener-
ate, via a speaker system, the distinct g-phoneme sound asso-
ciated with the p-phoneme control signal. A sequence of
p-phoneme signals may be used to generate a sequence of
phoneme sounds, representing a word, whereas a larger
sequence of (words) phoneme sounds may represent a verbal
sentence.

The selected phoneme combinations and the total number
of phoneme-types that make up Table 2 may be optimized so
that every sequence of phonemes generated by the verbal-
phoneme sound generator is a high fidelity representation of
the words or sentences ordinarily spoken by humans. Each
sequence of p-vectors includes control functions such as
loudness, sequential word-speaking rates and intonations
such as questioning, declarative, commanding, etc. It is
important to note a) that each distinct g-phoneme recorded
into the verbal-phoneme sound generator has a p-phoneme
signal associated with it, b) that each sequence of p-phoneme
control signals are trained to represent the words and sen-
tences spoken by the human trainer-supervisor who recorded
the individual distinctive phoneme into the verbal-phoneme
sound generator, ¢) that the initial recognition training and
error correction is performed by using the g-field output of the
verbal-phoneme sound generator as an input to the linear
microphones of the auditory RRC-recording monitor, and d)
that the collective modalities designed into the RRC record-
ing monitor are tuned to the g-phoneme sounds generated by
the trainer-supervisor. Note that training-programming the
auditory verbal-phoneme sound generator is analogous to
learning to play the piano, wherein each key of the piano is
equivalent to a p-direction control signal. Instead of control-
ling the pitch (frequency associated with a piano-key), the
auditory RRC learns the sequential variable processing peri-
ods between p-vectors so as to solve the co-articulation prob-
lem, and thereby generate an understandable set of words and
sentences.

TABLE 2

English phonemes and phoneme-combinations utilized
in some embodiments
120-English phonemes and phoneme combination

1-5 aeiou

6-11 ba be bi bo bu b(short)
12-17 sa se si so su s(short)
18-24 ka ke ki ko ku kay k(short)
25-30 da de di do du d(short)
31-36 fa fe fi fo fu ef
37-42 ga ge gi go gu g(short)
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TABLE 2-continued

English phonemes and phoneme-combinations utilized
in some embodiments
120-English phonemes and phoneme combination

43-48 jajejijojujay
49-53 ha he hi ho hu
54-59 lalelilo luel
60-65 ma me mi mo mu em
66-71 nane ni no nu an
72-76 pape pi po pu
77-81 qaqe gi qo qu
82-86 rareriror
87-92 ta te ti to tu t(short)
93-97 va ve vi vo vu
98-102 Wa we Wi wo wu
103-106 Xa Xe Xi X0 Xu
107-111 yaye yi yo yu
112-116 za ze zi Zo Zu
117-120 ss ff oo ee
- Table 2 -

Section C—the Auditory Interface Circuit Stage
(Steps 3,4, 5, 6)

Step 3. The Spectrum Analyzer and Decomposition into
Collective Modalities

The spectrum analyzer searches the incoming signal for
specific amplitude and frequency modulations that are char-
acteristic of verbal speech. Such amplitude and frequency
modulations are described as AM or FM glides. The rise times
of'a small collection of frequencies that form an AM or FM
glide gives rise to alternative collective modalities of the
groups of fibers (depending on the FM-time characteristics of
the group). And the spectrum analyzer is programmed to
search the incoming signal for collective modalities that are
characteristic of words, consonants or vowels present in the
incoming signal.

The collective modalities that are tuned to the verbal-pho-
neme input are applied to the input of an RRC-controller
equipped with a control-signal-operated verbal-phoneme
sound generator. The RRC is trained to perform real time
verbal-word and sentence pattern recognition, identification
and comprehension. It generates phoneme-words-sentences
in response to the decomposed input sound signals.

In the alternative embodiment the function of the spectrum
analyzer is performed by the tonotopiclly organized basilar
membranes. The decomposition of basilar membranes into
collective modalities is shown in FIG. 6. Three basilar mem-
brane rows are designed into the right and left side pick up
microphones, a total of 6-basilar membranes. Each set of
basilar rows consists of an inner row (subsystem 601 in FIG.
6), a middle row (subsystem 602 in FIG. 6), and an outer row
(subsystem 603 in FIG. 6). Each basilar row is made up of the
approximately 16,000 stiff elastic reed-like fibers and a set of
microphone transducers located on the opposite side of the
basilar membrane that pick up and convert the mechanical
vibrations into electrical vibrations.

The Uniform Collective Modality:

The fiber bundles of the inner row (subsystem 601 in FIG.
6), illustrate that the length of the fibers increase linearly (and
the stiffness decreases progressively) as one goes from the
base to the apex of the basilar membrane. The frequency
resonances of the linear basilar membrane and the micro-
phone transducers distributed along the basilar membrane
also increases linearly as one goes from base to apex.

The modality of a single vibrating reed-fiber is a sound
sensation of a pure tone representing the pitch or tuned fre-
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quency of vibration of the reed fiber. The collective modali-
ties of all the reeds vibrating simultaneously are a high fidelity
representation of the combined sound, the timbre of the sound
generated by the collection of vibrating reeds. For example,
the collective modality associated with an orchestral rendi-
tion is the combined musical output. The so-called “tone’ or
‘color’ of all the instruments in the orchestra. The two notable
features of the collective modalities of orchestral sounds are
a) since perception does not imply recognition it is likely that
animals, auditory robots and humans detect the orchestral
rendition as a high fidelity sound stream that distinguishes the
pitch, timbre, and loudness of the sound, limited only by the
frequency response and sensitivity of the auditory sensors,
and b) The spectral volume of the sound may be described in
terms of the sub-modality of additive (coincident) spectral
bands (each band defined by a microphone), similar to the
addition of visual color receptors. Just as the experience of the
sum or difference of two visual color filters, such as a red filter
combined with a green filter to yield a red, green color hue
modality, so the sum of two or more orchestral spectral bands
may yield a “rich spectral volume,” called the timbre of the
sound, that represents the modality of the sum of the spectral
bands generated by the various instruments of the orchestra.
Thus the array of microphones may form a sound collective
modality similar to the visual collective modalities described
in the visual RRC-recording monitor disclosure. The basic
difference between the collective sound modality and the
visual modality is in the amount of location and time-se-
quence data generated by the pattern. The visual data yields
precise location data in a three-dimensional nodal mapping of
the 3-D Euclidian space, whereas the sound modality oper-
ates in a function space free of location-spatial data. And
whereas the collective visual data may be streaming-videos or
stationary in time, the collective sound modalities are always
sequential and streaming.

Non-Uniform Collective Modalities:

Non-uniform collective modalities are groupings of hair-
like fibers that are tuned selectively to some distinctive fea-
tures of the spectrographic (a-f-t) frequency pattern. Among
the distinctive features are segments of frequency changing in
time (FM sweeps or glides) or band-pass noise bursts with
specific center frequency and bandwidth. Examples of non-
uniform collective modalities are shown in FIG. 6 (subsystem
502 and 503). The middle and outer rows of basilar mem-
branes shown in the Figure consist of v-shaped palisade of
fibers. Each of the v-shaped palisades has a unique FM-glide
or sweep rise time associated with it and a microphone-
transducer sensitive to that rise time. The microphone-trans-
ducer will generate an electrical output if, and only if, the
FM-glide rise-time matches the rise-time of the reed-fibers in
the v-shaped palisade. The v-shaped palisades shown in FI1G.
6 (subsystem 602 and 603) are designed to be tuned to dis-
tinctive FM-glides, sweeps or specific band-pass noise bursts
that are present in human verbal speech.

Collective modalities for auditory perception generate
sound segregation that allows the RRC-robot to detect low
amplitude (whispers) and distinctive f-t-features of different
phoneme sounds in a high background noise environment.
The RRC-robot may also discriminate between very small
differences in frequencies and intensity levels. The non-uni-
form collective modality may give the robot the capability to
distinguish spectral patterns regardless of the region of the
spectral band in which they occur. Thus the same phoneme
sound patterns may be identified regardless of whether they
are generated by a high pitch female voice or a low pitch male
voice. In addition the auditory RRC-recording monitor is
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designed to perform spectro-temporal and spatial-location
analysis on the signals received by the dual microphone trans-
ducers shown in FIG. 5.

Step 4. The g-Magnitude and p-Direction of a p-Phoneme
Vector

Each set of g-phoneme and p-phoneme signals may be
characterized by a p-vector wherein the g-phoneme signal is
the magnitude of the p-vector and the p-phoneme control
signal is the direction of the p-vector. The magnitude of each
p-vector is the g-phoneme signal that is characterized by a
spectrogram that shows the electronic amplitude and fre-
quency of the g-phoneme sound wave in an amplitude-fre-
quency-time (a-f-t) function space-domain. The p-phoneme,
g-phoneme characterization and the multi-dimensional func-
tion space domain were claimed in the patented RRC disclo-
sure (U.S. Pat. No. 6,560,512, dated May 6, 2003). Each
(a-f-t)-characterization of a phoneme-sound is identified
with, and related to a p-phoneme control signal that repre-
sents a pointing direction in a multi-dimensional p-vector
space. Note that the p-phoneme directional vector when
applied to the verbal-phoneme sound generator, via a speaker
system, generates the q-phoneme sound associated with the
p-phoneme directional vector. FIG. 7 shows a sample a-f-t
spectrogram of two short bursts of sound. Each burst of sound
represents the 3-phoneme sequence, a-wo-ff, which is
received by the array of microphone transducers. The ampli-
tude, frequency, and time of the bursts represent the magni-
tude of the p-vectors and are shown as a function of time in the
upper portion of the FIG. 7. The associated p-phoneme vector
directions, shown in the lower part of the FIG. 7, represents a
sequence of control signals that when applied to the verbal-
phoneme sound generator, generates the sound bursts defined
by the (a-f-t)-spectrogram.

Step 5. The Multi-Dimensional Auditory Nodal Map Mod-
ule

The auditory Nodal Map Module (NMM), shown as sub-
system 115 in FIG. 1, is a multidimensional p-q function
space wherein the q represents the spectrographic character-
istics of the phoneme sound and the p is a control signal that
activates one of the 120 phoneme sounds generated by the
verbal-phoneme sound generator. In contrast to the displace-
ment Nodal Map Modules (NMM), wherein the g-visual and
g-tactile signals are totally independent of the control signal-
p, in the auditory-NMM the q-signal is tightly attached to the
p-phoneme control signal. The magnitude of each p-phoneme
vector is the g-phoneme signal itself. That is, the magnitude
of the p-phoneme vector is the spectrographic characteristic
(the a-f-t function) of the phoneme sound, and the direction of
each p-phoneme vector is one of 120 directions to an adjacent
node in a multi-dimensional function space. Also, whereas in
the displacement Nodal Map Module, the p-vectors represent
a physical displacement to an adjacent node in 3D Euclidean
space, in the auditory Nodal Map Module, the p-vector rep-
resents a displacement to an adjacent node in a multi-dimen-
sional function space. Since the p-vector represents one of
120 different directions (to an adjacent node), a 5-dimen-
sional function space is required to accommodate the 120
directions to adjacent nodes. Note that in order to relate the
multi-dimensional nodal map vectors to the self-knowledge
self location and identification coordinate frame, the 120
p-phoneme directions of the multi-dimensional space are
activated by a selected set of 120 nodes in the 3D-self location
and identification coordinate frame. And the control of the
verbal-phoneme sound generator is analogous to controlling
the vocal chords as one learns to play the piano with 120
fingers (See Step 2 describing the verbal-phoneme sound
generator).
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In general, if a larger number of phonemes, say N-pho-
nemes are selected for Table 2, the dimensionality of the
auditory Nodal Map Module must be sufficiently high so that
at least N different adjacent nodes surround the initial posi-
tion of p, and each transition to an adjacent node represents
one of the N different phoneme sounds generated by the
verbal-phoneme sound generator. The functional significance
of the auditory Nodal Map Module is selected so that each
p-transition between nodes has a unique g-phoneme associ-
ated with it, and each g-phoneme has a correlated p-phoneme
direction associated with it. Thus a “heard” sequence of
g-phonemes generating a word or sequence of words may be
converted by the auditory RRC into a sequence of p-vector
directions, where the direction of each p vector is determined
by its g-magnitude, the amplitude, frequency and time char-
acteristics of the g-signal. It is this close relationship between
sequences of a-f-t patterns and the sequence of p-phonemes
that describe them, that may allows the sequence of a-f-t
patterns to be perceived as a sequence of p-vector directions
in a 5-dimensional Nodal Map Module space. This total navi-
gational path within the multi-dimensional Nodal Map Mod-
ule space may also be perceived as a TIT (Task Initiating
Trigger) that initiates either a simple verbal repetition task or
any other task designed into the HTD.

For example, the magnitudes and directions of a sequence
of auditory p-vectors representing the sequence of phonemes
of the word “listen’ is illustrated in FIG. 8. In FIG. 8, the
g-sequence of phoneme-sounds is shown on the a-f-t diagram
located above the p-phoneme directional vectors. The a-f-t
diagram represents the magnitudes of a sequence of p-vector,
whereas the various pointing directions of the p-vectors are
control signal that may be applied to the verbal-phoneme
sound generator. Each p-phoneme vector shown on the bot-
tom of FIG. 7, is a control signal that controls one of the
distinct sounds generated by the sound generating speaker
system. The navigational path ofthe sequence of p-phonemes
for the word listen is illustrated at the bottom of FIG. 8. FIG.
9 illustrates the navigational path of five p-phonemes direc-
tional vectors through a 5-dimensional phoneme space that
accommodates the 120-phoneme sounds listed in Table 2.
This figure is similar to the multi-dimensional p-phoneme
vector transitions shown in FIG. 4 of U.S. Pat. No. 6,560,512
dated May 6, 2003. FIG. 9 illustrates that at each nodal
location there are 120 distinct and separate directions to adja-
cent nodes and that each direction represents one of the pho-
neme sounds listed in Table 2. The sequence of p-signals,
shown as a navigational path through the 5-dimensional func-
tion space, may be used to generate any multi-phoneme word
when the p-signals are applied to the verbal-phoneme sound
generator.

The mathematical formulation of the auditory Nodal Map
Module is a multi-dimensional vector function space where
the magnitude of each vector is given by the spectrographic
(a-f-t)-function and the identification of the phoneme sound is
determined by its direction. The robotic p-phoneme direc-
tional vectors are control signals that are analogous to the
motor control of the human sound generating mechanism.
The human muscle-motor control signals contort the facial
muscles, the mouth-lip-tongue-vocal chord, and airflow of
the human sound generator in order to generate the g-pho-
neme sound associated with the human-facial contortions.
The 120 nodes in the self location and identification coordi-
nate frame, referred to above, activate and are analogous to
the human-muscle motor control signals.

If the auditory Task Selector Module (TSM) of an RRC-
controller is trained to repeat the sound heard by the RRC-
robot, the g-phoneme (a-f-t) of the heard sound is identified as
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a repeat-TIT and applied to the Nodal Map Module as a
sequence of p-q nodal positions. The repeat-TIT activates the
Sequence Stepper Module to generate a sequence of control
p-directional signals. In the repeat-TIT mode the navigational
path in the Sequence Stepper Module is the same as the one
detected by the Nodal Map Module. The output of the
Sequence Stepper Module is a sequence of p-directional sig-
nals that control the verbal-phoneme sound generator to gen-
erate the appropriate g-phoneme (a-f-t) sound associated with
each p-directional signal. The p-directional signals and the
g-phonemes are related to the self-knowledge module by
utilizing the selected nodes of the 3-D self location and iden-
tification coordinate frame to generate the p-directional vec-
tors in the auditory multi-dimensional function space.

TABLE 3

Training-Programming of the TSMs of the Declarative Memory
System: Application of the Search Engine Access Rule.

T-100

Training-programming TSMs of Declarative Memory System:
Application of the Search Engine Access Rule
T-200

A. Babbling Sequence Stepper Training

Training to repeat, read and write

201. repeat the heard word

202. read the written word

a) read the printed word

b) read-spell the printed words

203. write (type) the printed words

204, dictation training: voice activated typewriting.
T-300

B. Comprehension Training

All objects located in the visual space

301. verbal comprehension of all spoken word

302. verbal comprehension of all procedural tasks

303. verbal commands that activate displacement tasks

304. training to generate and respond to “how-to” training TIT’s

305. training to read a book with comprehension

306. comprehension of numbers and mathematical computation.
T-400

C. Conversational Training:

Robot-human and robot-robot Conversation

401. robot-human conversation task

402. response to in-passing friendly confrontation

403. response to emergency and in-passing confrontational interactions

Note that Step 6a, the speech processing training step,
shown in Table 1, is part of the interface circuit stage. It
presents a new and unique speech processing methodology
that has never before been applied to a system. The speech
processing methodology is part of the training-programming
methodology for the TSMs of the declarative memory sys-
tem, as described in Table 3. The Step 6a is divided into 2
parts. The first part presents explanatory notes and terminol-
ogy associated with the discipline of speech processing. The
second part describes, in Table 4: Subtask A-1, the training
methodology of the RRC for the repetition and babbling of
phoneme-sounds spoken by the trainer-supervisor (sub-task
T-201 in Table 3).

Explanatory Notes and Terminology:

Speech processing (without robotic comprehension) of the
vocal or written words and sentences presented to the robot, is
presented in this section. In Step 6a, the auditory RRC is
trained to repeat the words spoken by the trainer. In the
following section, Step 6b, it is trained to verbally read the
words written and presented to the visual system of the RRC,
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and to write-type words either spoken by the trainer or written
words presented to the visual system of the RRC.

Step 6a-Subtask A-1. Training to Repeat Phoneme-Sound
Based Words and Sentences: A New Methodology of Speech
Processing

Repetition and Babbling in the Sub-Task A-1 TSM (Sub-
Task T-201 in Table 3):

The first step for training the auditory RRC is to program
the “babbling” Sequence Stepper Module and an associated
TSM to accurately and quickly repeat the sound of words,
strings of words, or sentences heard by the robot. The trained
repetition and babbling TSM (the sub-task A-1 TSM) acti-
vates the total vocabulary of the robot. Any and all words or
sentences spoken by the robot and activated by other prime
task TSMs must access the sub-task A-1 TSM and form a
compound TSM that does not necessarily repeat the sound but
accurately enunciates other words and sentences (taken from
the sub-task A-1 TSM) and associated with the compound
TSM. Many of the design activities of the auditory RRC are
aimed at achieving enunciation accuracy in the repetition and
babbling sub-task A-1 TSM. In order to achieve repetition
accuracy it is necessary to refine the design of the verbal-
phoneme sound generator, expand the number of phoneme
sounds listed in Table 2, and refine the tuning of the spectrum
analyzer to the actual collective modalities present in the
English language verbal input signal.

RRC-Processing of “Repeat this Sound:

Table 2 lists the 120 phonemes sounds that are the constitu-
ents of all words and sentences generated by the verbal-
phoneme sound generator. Initially the robot may be pro-
grammed to repeat the combinations of p-phonemes included
in the 120 English language p-phoneme list and the phoneme
sounds listed at the bottom of the HTD shown in FIG. 2-3.
This process is repeated for all phonemes and all words made
up of a sequence of 2 to 7 phonemes listed in a 50,000
word-clause lexicon and commonly used combinations of
words, clauses and sentences selected by the trainer-supervi-
sor.

Each set of sound phonemes is picked up by the array of
pick up microphones associated with the sound search engine
and transmitted to the auditory-pattern recognition circuit.
The pattern recognition circuit of the prime task A TSM is
programmed to recognize as a TIT any sequence of g-pho-
nemes that are preceded by the trainer-supervisor-command
‘repeat this sound.” The sound TIT is applied to the Nodal
Map Module, which activates the Sequence Stepper Module
(SSM) to generate the sequence of p-phoneme directional
signals. The sequence of p-directional signals are applied to
the verbal-phoneme sound generator that regenerates the (a-f-
t) sound sequence applied to the Nodal Map Module. The
difference between the sound generated by the trainer-super-
visor, and the sound generated by verbal-phoneme sound
generator may be used initially as an error signal that corrects
the sequential p-directional signals generated by the
Sequence Stepper Module. For example, training the
Sequence Stepper Module to repeat accurately the sequence
of'p-phoneme control signals (as in the word a-pp-le shown in
FIG. 9) may be achieved by successive error correction and
refinements of the “self”-generated sound until it is identical
to the external “heard” sound. In each case the heard sound
must be a TIT that initiates the motor controlled repetition.
When the heard g-sequence is a TIT (as when preceded by the
command “repeat this sound”), then the Sequence Stepper
Module must generate a pre-planned sequence of p-phoneme
control signals (a babbling sequence of p-phonemes that are
identical to the initiating TIT).
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After the system has been trained to accurately repeat the
words of the trainer supervisor, the second stage of training
begins. In this stage the system is trained to recognize words
and sentences spoken by a large variety of persons, and the
co-articulated and colloquial variations commonly used in
English speaking countries. In this stage, the system does not
repeat the heard word, but utilizes the data obtained during the
initial phase to accurately represent the heard colloquialism
with words and sentences learned during the initial stage of
the training.

“Unpacking” the Highly Encoded, Context Dependent
Speech Signals:

The problem of converting the perceived acoustic spectro-
graphic properties of language into an identifiable phonetic
structure is an ill posed problem, similar to the inverse optics
problem (Marr, D (1962), “Vision,” Freeman Press). There is
not a simple one to one mapping between the acoustic prop-
erties of speech and the phonetic structure of an utterance.
The acoustic problem is generally stated as the problem of
mapping the phonetic levels into acoustic levels. Co-articu-
lation (the segmentation problem) is generally identified as
the major source of the problem. Co-articulation gives rise to
difficulty in dividing the acoustic signal into discrete
“chunks” that correspond to individual phonetic segments
and a lack of invariance in the acoustic signal associated with
any given phonetic segment. The lack of invariance means
that the precise form-pattern of an acoustic spectrogram
changes with a given phonetic context as a function of the
co-articulation. The standard methodologies of speech pro-
cessing for mapping the acoustic properties of speech into the
phonetic structure of an utterance include lexical segmenta-
tion processing (co-articulation), word recognition process-
ing, interactive-activation processing, context effect process-
ing, syntactic effects on lexical access processing, lexical
information and sentence processing, syntactic processing
and intonation-structure processing.

The RRC Methodology for Solving the Inverse Auditory
Problem:

Because of the complexity in the mapping between the
acoustic signal and phonetic structure, the auditory RRC must
have some means of “unpacking” the highly encoded, context
dependent speech signals. “Unpacking” is performed by
training the RRC to repeat and “remember” (recognize TITs
in the pattern recognition circuits) the “heard” words and
sentences of multiple speakers as described above. Further
“unpacking” is performed by associating and calibrating the
heard verbal speech with the corresponding visual and tactile
data obtained in the visual and tactile coordinate frames in
which the robot is operating, and developing a sensitivity to
such factors as acoustic phonetic context, speaker’s “body
language,” speaking rates, loudness and “emotion laden”
intonations. The auditory-visual RRC takes into account the
acoustic consequences of such variations when mapping the
acoustic signal into the phonetic structure. The problems of
speaker’s “body language,” “emotion laden™ intonations,
acoustic phonetic context, speaking rates, and loudness is
solved by the auditory RRC by coordinating the search
engines of the visual and tactile systems with the search
engine of the auditory RRC. The visual and tactile search
engines are presented in FIG. 4, the Hierarchical Task Dia-
gram (HTD) of the visual-tactile RRC that has been copied
from a figure presented in U.S. Pat. No. 6,560,512, issued
May 6, 2003. FIG. 2-3 adds an additional search engine, the
auditory search engine, to the three search engines shown in
FIG. 4. The visual search engine may add visual cues for
unpacking the acoustic phonetic context associated with
“body language,” facial expression, and observed lip move-
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ment. The auditory search engine is designed with collective
modalities that are tuned to the self-generated distinctive
feature in the a-f-t diagram, and operating in conjunction with
the other search engines, may distinguish the acoustic pho-
netic context, speaking rate, loudness, and “emotion laden”
intonations present in the input signal. Table 4 presents the
training methodology for the RRC-repetition and babbling of
phoneme-sounds spoken by the trainer-supervisor (sub-task
T-201 in Table 3).

The trained prime task A-TSM is a memory module that
stores all the TITs that identify and properly enunciate all the
words listed in the lexicon and the commonly used combina-
tions of words, clauses and sentences selected by the trainer-
supervisor. All subsequent verbally generated tasks must
access the TITs stored in the prime task-A TSM in order to
associate those words and phrases with other TIT generated
by the visual system, the tactile system, the olfactory system,
the gustatory system, or other word TITs received by the
auditory system.

At this point the controller has performed all the speech
processing that allows it to recognize and repeat, but not
comprehend, all the phoneme constituents of words, sen-
tences and clauses listed in the lexicon. The auditory RRC-
monitor has thereby mapped the acoustic signal onto a lin-
guistic representation that is amenable to declarative
comprehension described in Section D. (See prime tasks B
and C shown in FIG. 2-3).

TABLE 4

Training Methodology for Repetition and Babbling: The auditory RRC is
trained to repeat, via the verbal-phoneme sound generator, the words and
sentences spoken by the trainer-supervisor, as follows:

The high priority TIT that shifts the robot to Sub-Task A-1 is a simultaneous
visual recognition image of the trainer, and the command “repeat this sound”
spoken by the trainer.

All the words and sentences repeated by the robot are taken from a 50,000
word lexicon that represents the total vocabulary of the robot.

The lexicon or vocabulary of the robotic controller consists of the set of
words and sentences that the sub-task A-1 TSM has been trained to repeat.
The trained sub-task A-1 TSM is a memory system that properly enunciates
all the words and sentences listed in the lexicon.

Optimization of the sub-task A-1 TSM to properly enunciate all the words
and sentences listed in the lexicon entails a) refining the design of the
phoneme sound generator to assure that the lexical segmentation and timing
intervals between successive phonemes are optimized. b) expanding the
number of phoneme sounds listed in Table 1 to optimize co-articulation
problems. And c¢) refining the tuning of the spectrum analyzer (illustrated in
FIG. 5) to the actual collective modalities present in the English language
verbal input signal.

The sub-task A-1 TSM memory system is always accessed by other TSMs in
order to form compound TITs whenever verbal sounds other than the “repeat
this sound” TIT are to be generated by the robot.

Queries that access the sub-task A-1 TSM generally relate to the verbal
enunciation of the words and phrases stored in the A-1 TSM. Therefore in
anticipation of such questions acceptable and not acceptable grammatical
structural forms of verbal enunciation should be programmed into the search
engine for each word or phrase in the lexicon and the specific answer to each
anticipated query must be programmed into a compound TSM.

An example of a compound TIT is the command “identify this visual
image.”

Thegcompou_nd TIT may consist of the visual image-TIT presented to the
robot, and the sub-task A-1 TSM-TIT “repeat this sound.” In this compound
TIT, described in the training of the sub-task B-1 TSM, the robot is
conditioned to relate the image of an object with the verbal word taken from
the A-1 TSM that describes the object.

Section D—The RRC Processing Stage; Training the
system to Respond to the Auditory Signals (Steps 7
and 8)

Explanatory Notes and Terminology:
The following sections describe the training-programming
terminology and processes associated with comprehension
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training of the RRC-Humanoid robot. The basic operation of
the RRC was described in Section A.

The Query Search Engine Access Rule for Training the
Declarative TSMs:

The declarative memory system of the RRC-robot is made
up of an array of TSMs with each TSM storing a large number
of words phrases and sentences that represent the total
vocabulary of the robot. In order to respond verbally with
appropriate words and sentences the RRC must analyze the
verbal input data present in any query, search through the
memory TSMs, find the set of TSMs that have parts of the
answer stored in them, form a compound TSM that has the
total explicit word-answer stored in it, and activate the appro-
priate word answer that is stored in that compound TSM. The
following programming rules have been devised in order to
facilitate the search for an appropriate response to any audi-
tory-query input signal: a) Search the input signal to deter-
mine which TSMs are likely repositories of the appropriate
verbal response b) Form a compound set of TSMs wherein the
response may be stored, and ¢) Utilize the data present in the
auditory input signal and in the compound set of TSMs to
[Jhome in on an appropriate response.

For example, the search of the Robot for an answer to a
verbal query by the trainer-supervisor to “identify this visual
image” (a visual image presented to the Robot) leads to an
identification of two TSMs and the formation of a compound
TSM. The two identified TSMs are most likely the TSM
containing the visual image pattern-TIT presented to the
robot, and the TSM containing the repeat this sound—verbal
word or phrase that describes the presented visual image—
TIT taken from the sub-task A-1 TSM that stores all the
nouns, adjectives, verbs and adverbs taken from the 50,000
word lexicon. The formation of the compound TSM includes
the phrase ‘I see an . . . °, wherein the training should select
that word or phrase that describes the presented visual image.
The word selected by the trainer is repeatedly related to the
image until the compound TSM is conditioned to respond I
see a (insert word selected by the trainer)’ without the prompt
from the trainer to ‘repeat this sound-(word selected by
trainer)-.’

Note that without the access rule the compound TSM does
not contain sufficient data to narrow the search to the particu-
lar words or phrases that describe the visual image. The
access rule facilitates the process of narrowing down the
search by noting that the sub-task A-1 TSM may be accessed
by means of a ‘repeat this sound’ command. Thus the com-
pound TSM may be programmed to combine a ‘repeat this
sound- verbal descriptor of the visual image-" TIT with the
particular visual image TIT, and generate the answer TIT of ‘1
see a -verbal descriptor of the visual image-.”

Note that if the compound TSM is made up of more than
3-TSMs as the likely repositories of a response, the response
of'the robot should be a verbal request for more information.
If on the other hand, there is no trained TSM wherein the
response is stored, the response of the robot is ‘I don’t know’
or ‘I’ve not been programmed to respond to that question.’

The search engine access rule is always taken into consid-
eration in the programming of the various TSMs by assuring
that any query presented to the robot contains pointers to
other TSMs or compound TSMs that contain a response to the
query. Verbal interactions are greatly improved when the
person interacting with the robot is familiar with the TSMs
and compound TSMs that comprise the declarative memory
system of the robot.
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Accessing the Verbal Data Stored in the Trained Declara-
tive TSMs:

Verbal data stored in the array of TSMs that make up the
declarative memory system is generally accessed either
directly in response to a query TIT presented to the robot, or
by use of the access rule forming a compound TSM that
contains the proper response to the query. Each TSM is pro-
grammed to receive query-TITs that verbally abstract the
information stored in the TSM. Direct queries that form TITs
are generally applied to the TSM during the training phase.
Queries that form TITs may also come from other TSMs to
form a compound TSM that contains the proper response to
the query.

A major constraint on the design of each TSM is that all
possible queries associated with the data stored in the TSM
must be anticipated whenever a verbal sentence is pro-
grammed into the TSM. For each of the possible queries one
or more of the array of TSMs must have an appropriate and
specific answer programmed into it.

The programming technique (and the manpower required)
is similar to the programming of some of the word based
search engines such as Google or Bing. Additional examples
and methodologies for accessing the data stored in the array
of declarative TSM are presented in the preface to Steps 6a to
8.3 that describe the declaratory verbal information pro-
grammed into each TSM and the anticipated queries that
utilize the data stored in the TSM to form compound TSMs.
The compound TSMs generally include TITs that activate the
response to any given query.

Correcting Incorrect Grammatical Structures:

Grammatical rules are implicitly programmed into the sys-
tem in the training phase when queries are anticipated in order
to access data stored in the TSMs, and when compound TSMs
are formed that contain a specific verbal response to the query.
Incorrectly structured queries must include sufficient infor-
mation to form compound TSMs. Such queries are trained to
form compound TSMs that not only generate a specific
response to the query, but are also trained to include within the
response, recognition of the incorrect grammatical structure
and correction of the incorrect grammatical structure.

Step 6b. Training to Repeat, Read, and Write Phoneme-
Based Words and Sentences (Sub-Task A-2 to 5)

Step 6b, the speech recognition-training step shown in
Table 1, is part of the general robotic training programming
performed on the robot. The explanatory note, presented in
the introductory part of Section D, the training-programming
section, applies to Step 6b. Step 6b is divided into 4 subtasks
(Subtask A-2 to A-5). The training methodology for each
subtask is presented in the following tables:

Table SA and 5B presents the training methodology for
subtask A-2. It describes the training methodology to ver-
bally-read and spell the written words and sentences. Verbal
reading, Sub-subtask A-2a, is shown in Table SA. Whereas
verbal spelling, sub-subtask A-2b, is shown in Table 5B.

TABLE 5SA

Training methodology (Subtasks A-2a) to verbally read written
words and sentences(Subtask T-202 in Table 3).
Sub-subtask A-2a Verbal reading

a) The high priority TIT that shifts the robot to sub-task A-2-1 is a
simultaneous visual recognition image of the trainer, a visual image of the
written word or sentence, and the command “read the words you see”
spoken by the trainer.

b) The command-TIT to “read the words you see” is a compound-TIT
that couples the “repeat this sound” command stored in the sub-task A-1
TSM with the visual image-TIT of the written letters that spell the spoken
word.
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TABLE 5A-continued

Training methodology (Subtasks A-2a) to verbally read written
words and sentences(Subtask T-202 in Table 3).
Sub-subtask A-2a Verbal reading

¢) The programming technique used to generate compound TITs is a
repetitive-associative (Pavlovian) technique that trains the RRC-robot to
respond to the visual image of written letters, when the compound
command “repeat this sound” is not given.

d) Queries that access sub-task A-2-1 generally relate to verbal reading
of various types of material (articles, periodicals, books etc), the beginning
and end for each reading, and the identification of the audience for which
the reading is performed. All anticipated queries should be programmed
into the search engine and specific answers programmed into compound
TSMs.

e) The queries that access sub-task A-2-1 are limited by the lack of
comprehension of the words read by the RRC. The full range of queries
are included in sub-task B-5 TSM which involves robotic reading with
comprehension.

TABLE 5B

Training methodology (Subtasks A-2b) to verbally spell
written words and sentences(Subtask T-202 in Table 3).
Sub-subtask A-2b Verbal spelling

a) The high priority TIT that shifts the robot to sub-task A-2-2 is a
simultaneous visual recognition image of the trainer, a visual image ofthe
letter-spelling of the written word taken from the 50,000 word lexicon, and
the command “read-spell the words you see” spoken by the trainer.

b) The TIT to “read-spell the words you see” is a compound-TIT that
associates and conditions the visual image of the written letters with “repeat
this sound” command (sound of verbal spelling) stored in the sub-task A-1
TSM and the “read the words you see” command.

¢) All the words and sentences read and spelled by the robot are taken
from the 50,000 word lexicon that represents the total vocabulary of the
robot.

d) The trained sub-task A-2-1 and A-2-2 TSMs are memory systems that
properly enunciate and verbally spell all the written words and sentences
listed in the lexicon.

e) Queries that access the sub-task A-2-2 TSM may be expanded to “how
do you read-spell this word,” and other lexical structures that express the
same query. However, an expanded range of spelling queries are included in
the prime task B-TSM that add comprehension to all the words present in the
lexicon.

f) Queries that access the sub-task A-2-2 TSM may be expanded to hand
written text by training the TSM to relate handwritten words with type-
printed words.

Tables 6 A, 6B and 6C present the training methodology for
Subtasks A-3 to 5. Table 6A describes the training method-
ology to verbally spell a verbal word (Subtask A-3: Sub-task
T-203 in Table 3 and sub-task A-3 in FIGS. 2-3). Table 6B
describes the training methodology to typewrite the read text
(Training the robot to reads and then type-write the read text)
(Subtask A-4: Sub-task T-204 in Table 3, sub-task A-4 in
FIGS. 2-3). Table 6C describes the training methodology to
program the RRC-robot to take dictation; Voice activated
typewriting (using the training mode time scale). (Subtask
A-51n FIGS. 2-3, and subtask T-205 in Table 3).

TABLE 6A

Training Methodology to Verbally Spell Words
Subtask A-3: Training methodology to verbally spell the words spoken by
the trainer-supervisor (subtask T-203 in Table 3, Sub-task A-3 in FIGS. 2-3)

1. The high priority TIT that shifts the robot to sub-task A-3 is a
simultaneous visual recognition image of the trainer-supervisor and the
command“spell the following word-- specify word--"

2. The TIT“spell the following word-- specify word--"" forms a compound
TSM that associates two conditioning TITs: a) A visual image of the written
word TIT and b) The“read-spell the word you see” TIT, with the conditioned
“spell the following word” command.
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TABLE 6A-continued

Training Methodology to Verbally Spell Words
Subtask A-3: Training methodology to verbally spell the words spoken by
the trainer-supervisor (subtask T-203 in Table 3, Sub-task A-3 in FIGS. 2-3)

3. The compound TSM generates a response that consists of a repetition
of
the “word” specified in the “spell the following word ---” command followed

by the read-spelling sounds described in sub-task A-2-2.

4. After successive repetition the two conditioning TITs are slowly
removed from the presentation until the compound TSM responds without
the aid of the conditioning TITs.

5. All the words and sentences trained to be spelled by the robot are also
included in the 50,000 word lexicon that represents the total vocabulary
of the robot.

6. The trained sub-task A-3 TSM is a memory system that permits the
robot to properly spell all the words and sentences spoken by the
trainer-supervisor.

TABLE 6B

Training methodology (Subtasks A-4) to typewrite the read text.
Subtask A-4: Training methodology for teaching the robot to
type-write the read text (SubtaskA-4 in FIG. 2 and T-204 in Table 3)

1) The high priority TIT that shifts the robot to sub-task A-4 is a
simultaneous visual recognition image of the trainer, a visual image of the
written word or sentence and the command “write the viewed written word-
data” spoken by the trainer.

2) The TIT to “write the viewed written word-data” is a compound-TIT
that associates the “spell the following word” TIT, the “read-spell the words
you see” command, and the sub-task B-3 commands to perform a previously
trained displacement task (described in section 7.3 sub-task B-3: Verbal
descriptor commands that activate displacement tasks).

3) Note that the previously trained task, in this case, is a procedural finger-
typing training task (listed in the HTD shown in figure 3). The procedural
typing task converts the read-spell letters into the proper finger-keystrokes of
a typewriter keyboard.

4) All the words and sentences trained to be written-typed by the robot are
also included in the 50,000 word lexicon that represents the total vocabulary
of the robot.

5) The trained sub-task A-4 TSM is a memory system that permits the
robot to properly type and spell all the words and sentences read by
the robot.

6) Queries that access the sub-task A-3 TSM may be expanded to hand
written text by training the TSM to relate handwritten words with
type-printed words.

TABLE 6C

Training methodology (Subtasks A-5) to Verbally take dictation.
SubtaskA-5: Training the RRC-Robot to Take Dictation (Voice Activated
Typewriting) (sub-task T-205 in Table 3, and Sub-task A-5 in FIGS. 2-3).

1) The high priority TIT that shifts the robot to sub-task A-5 is a
simultaneous visual recognition image of the trainer and the command “type
the following dictated words™ spoken by the trainer.

2) The TIT to “take dictation” is a compound-TIT that associates the
words spoken by the trainer-supervisor with a visual image of the written
words and sentences spoken by the trainer-supervisor, and the command to
type-write the read text. After successive conditioning the visual image is
removed, and the RRC generates the typewriting displacement task,
activated only by the words spoken by the person dictating.

3) Note that the procedural finger-typing training task must be performed
as described in section 7.3 sub-task B-3.

4) Dictation is initially limited to the total vocabulary of the robot (50,000
word lexicon). The vocabulary may be expanded to include professional
words spoken by a specialist.

5) The trained sub-task A-5 TSM is a memory system that permits the
robot to take dictation and properly spell-type all the words and sentences
spoken by the trainer.

6) Queries that access the sub-task A-5 TSM may be expanded to “take
dictation” and other lexical structures that express the same query.
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Step 7. Comprehension of all Objects Located in the Coor-
dinate-Space Around the Robot (Listed as Task T-300 in Table
3, and Prime-Task B in FIGS. 2-3)

Explanatory Notes and Terminology:

The following sections describe the training programming
terminology and processes for training “comprehension” into
an auditory humanoid RRC-system.

Robotic Comprehension:

Programming-learning to comprehend the meaning of a
“heard” word: Robotic comprehension is the simultaneous
identification and coupling each word or sentence heard,
read, spoken or written by the robot, with the visual image,
tactile data, olfactory data, gustatory data and lexical defini-
tion (taken from the 50,000 word lexicon) that is associated
with each word or sentence.

In order to comprehend the meaning of a word or a
sequence of word-TITs it is necessary to use a conditioning
learning technique that associates and relates the sequence of
words-TITs taken from the lexicon recorded in the prime task
A-TSM with the visual TIT, tactile TITs, or other word-
sequence TITs that relate to the sequence of words-TITs. For
example, a visual image TIT may serve as a visual descriptor
by associating or conditioning that image with a g-phoneme
sequence TIT that is the “word definition” or ““verbal descrip-
tor” of the visually-seen image. Thus the visual image in
combination with a word TITs may serve as a compound
TSM that generates a TIT for the generation of one or more
“words” that is descriptive of the image. And hearing the one
or more words may serve to generate an “association” with
the visual image, which is defined to be comprehension of the
meaning of the one or more words.

In order to achieve a high level of verbal comprehension,
the training process requires that the trainer-supervisor
repeatedly display the sight, smell, feel-touch, verbal defini-
tion of the object, and possibly taste of the object that is to be
comprehended. For high levels of comprehension of an object
such as an apple, the search engine operates on pattern rec-
ognition circuits associated with the auditory, visual, tactile,
olfactory and taste sensors. Thus in order to achieve a higher
level of verbal comprehension, the programming associates
the word apple with the visual image of the apple the verbal
definition of an apple, the “feel” of the apple, the “smell” of
the apple, or even the “taste” of the apple.

Verbal Descriptors of Sensory Data:

Verbal descriptors are words that describe visual sensory
data, auditory sensory data, tactile sensory data, olfactory
sensory data or gustatory (spectroscopic) sensory data. Visual
sensory data is the prime identifier of the meaning of verbal
words. Auditory, tactile, olfactory or gustatory data are gen-
erally secondary identifiers of the meaning of words, that
when added to the prime visual data identifier, increases the
level of comprehension of the RRC-robot.

In the following sections, the functional flow will be
described by using the visual system as the primary identifier
of the meaning of verbal words. A higher level of compre-
hension is achieved by correlating the visual image with the
tactile, olfactory and taste pattern recognition circuits. The
highest level of comprehension of the visual image, a dis-
tinctly human form of comprehension, is achieved by corre-
lating the verbal words that describe the visual image to a
verbal dictionary definition and encyclopedic description of
the words or phrase that describe the visual image.

Verbal Descriptors of Visual Data:

Visual data is the primary identifier of verbal words. Train-
ing the RRC-robot to perform sub-task B-1-1 consists of
programming the sub-task B-1-1 TSM to identify visual
images by using words to define the visual image. The verbal



US 9,302,393 B1

59

words are all the nouns, adjectives adverbs and verbs of a
50,000-word lexicon that are associated with robotic visual
images and tactile sensors. The high priority TIT that shifts
the robot to sub-task B-1-1 is the simultaneous visual image
of the trainer, coupled with the command spoken by the
trainer, “identify this visual image,” or “what is this.” This
command generates a search of all the TIT words in the
50,000 word lexicon and is programmed to respond with only
one sequence of words that identify the visual image (note
that the search is performed in this case by relating the visual
image obtained from the visual search engine TSM (in FIG.
4), with the repeat the heard sound TSM (shown in FIG. 2-3).
Learning the exact sequence of words is performed by con-
ditioning the visual image to the words that describe the
visual image.

The first step in the conditioning-training process is the
noun comprehension and conceptualization phase of the
training. In this step the trainer supervisor presents a visual
image of the noun-object to the robot and generates the com-
mand “identify the visual image”. The robot must learn to
respond to this command by generating a verbal noun iden-
tifier of the image. Learning the correct verbal noun identifier
is performed in a compound TSM, by conditioning a repeat
the heard sound command operating on the verbal noun iden-
tifier, with the “identify the visual image” command and the
visual image itself. After successive verbal identifiers spoken
by the robot, the trainer-supervisor first omits the “repeat the
heard sound command” and speaks only the noun identifier,
followed by the omission of the noun-sound identifier. At this
point the robotic response of the viewed noun-object and the
command “identify the visual image,” programmed into the
compound TSM, is the verbal response by the robot of the
verbal noun identifier. Higher levels of noun comprehension
is achieved by adding verbal descriptors of the tactile, olfac-
tory, and gustatory sensory data that is related to the visual
image of the noun, and relating the verbal dictionary defini-
tion of the noun to the noun-visual image. Generally, it is
convenient to perform the adjective word comprehension
training, described in step 3, by coupling all possible adjec-
tives to the noun training process described above.

The second step in the training process is the verb compre-
hension and conceptualization phase. In this step a video-
visual action patterns presented to the visual system of the
robot, may be used as the Task Initiating Triggers for a
sequence of phonemes that generate the words that are
descriptive of the visual action (i.e. walk, run, jump, hit,
punch, hug, kiss, eat etc.). The comprehension of verb-ac-
tions is achieved when the robot learns to verbally describe
the visually observed verb-action. The training methodology,
including higher levels of comprehension, is the same as that
described above for noun comprehension. Generally, it is
convenient to perform the adverb word comprehension train-
ing, described in step 3, by coupling all possible adverbs to
the verb training process described above.

The third step in the training process is the adjective and
adverbs comprehension and conceptualization phase of the
training. In this phase adjectives and adverbs may be attached
to the nouns and verbs included in the first and second steps of
the training process. The video visual data presented to the
visual system of the robot include scenes that are described
verbally by “walking fast,” “running away,” “picking up the
cup,” etc. The comprehension of the visual scene is achieved
when the robot learns to verbally describe the observed scene
verbally with a combination of nouns, adjectives, verbs and
adverb. The training methodology is the same as that
described above for the noun and verb comprehension train-
ing.
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Higher levels of description and comprehension are
included in the steps described above by including verbal
descriptors of the tactile, olfactory, and gustatory sensory
data that is descriptive of the verbal words defined by the
visual images, and the verbal dictionary definitions and ency-
clopedic descriptions of the verbal words defined by the
visual images.

Conceptualization:

Since the conditioned learning methodology of the pattern
recognition network is experiential in nature, the training
yields a circuit that may “conceptualize” the meaning and
comprehension of the nouns, verbs, adjectives, and adverbs
listed in the three steps described above. For example the
word “chair” may be learned as the class of all objects that one
“sits on”, regardless of their color, shape, or material. The
word “door” is conceptualized as the class of all objects that
allow entry, egress, and closure of a closed space. In addition,
the combined pattern recognition circuits may identify (and
comprehend) an “apple” as distinct from “pear” not only by
means of the visual system (shape and color) but also by the
simultaneous use of the taste pattern recognition circuit, the
tactile (texture) pattern recognition circuit and the olfactory
pattern recognition circuit. Learning is accomplished by
repeated conditioning of the “heard” sound of “apple” with
the sight of an apple, with the “touch-feel” of an apple, and
with the “self” generated (vocalized) sound of an “apple”.
That is, an apple must be recognized as a class of all objects
such that the visual, tactile, olfactory and gustatory system-
TITS act as a confirmatory conditioning response, and the
word a-pp-le will become the conditioned response.

Robotic Comprehension of the Word ‘Apple’:

FIG. 10 illustrates the training steps required to program
the robot to comprehend the meaning of the word “apple.” In
order to comprehend the word apple, it is necessary to com-
mand the robot to “identify this visual image” and to present
to the robot a visual image of an apple. The command to
identify this visual image is also a programming signal to
generate a virtual compound TSM. The visual pattern of the
apple is recognized as a TIT, and transferred to the virtual
compound TSM. Immediately after the “identify this visual
image command,” the command to “repeat this sound-apple-"
(See FIG. 10) is applied to the compound TSM. The phoneme
a-f-t pattern of the word apple is then transmitted to the virtual
compound TSM. The compound TSM then relates visual
images with g-phoneme (a-f-t)-patterns. The pattern recog-
nition circuit associates the TIT-word “apple” with the TIT-
sight of the apple and generates a compound TIT that acti-
vates the words “I see an apple” in the Nodal Map Module,
Sequence Stepper Module and Control Signal Module (CSM)
shown in FIG. 10. The phonetic sound of the word “apple is
accessed in the g-phoneme TSM by the “repeat this sound”
command. By combining the ‘repeat this sound’ command
applied to the word ‘apple’ with the ‘identify this visual
image’ command applied to the visual image of an apple, the
compound TSM may be programmed to generate the TIT-
words ‘I see an apple,” rather than the word ‘apple’ itself.

Note that prior to the time that the robot is given the
hint-command “repeat the sound-apple-,” the primary effect
of the ‘identify this visual image’ command on the virtual
compound TSM, is the phoneme word preface of ‘I see a-’.
However the robot does not know what it sees. At this point
the trainer supervisor commands the robot to “repeat this
sound”-‘Apple.” And the robot respond with ‘I see a-apple’.
With repeated coupling of the command “repeat this sound”-
‘apple’- with the visual sight of the apple, the combined-TSM
phoneme pattern recognition circuit will be conditioned to
generate the ‘I see an apple’ response to the command ‘iden-
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tify this visual image’, without the accompanying ‘repeat this
sound—apple’ command. That is, every time the visual sight
of an apple is coupled with the identify this visual image
command, the robot will respond, ‘I see an apple.” The robotic
controller is now trained to comprehend the meaning of the 3
word ‘apple’ (In terms of the visual-experiential impact that
the apple has on the robot.)

The training methodologies for subtasks B-1, B-2, and B-3
are presented in Tables 7A, B, and C. Table 7A presents the
training methodology for subtask B-1. Training the RRC-
robot to perform sub-task B-1 consists of programming the
sub-task B-1 TSM to identify verbally all the nouns, adjec-
tives, verbs and adverbs (of a 50,000 word lexicon) that are
presented to the robotic visual and higher level sensory sys-
tems.

15

TABLE 7A

Training Methodology (Subtask B-1) to verbally describe visual image data.
Subtask B-1: Verbal identification of visual images

20

1) The high priority TIT that shifts the robot to sub-task B-1 is the
simultaneous visual image of the trainer, coupled with the command,
“identify this visual image.”

2) The TIT to “identify this visual image” is a compound-TIT that couples
the “repeat this sound” command stored in the prime task A-TSM with the 25
visual image TIT-data presented to the auditory RRC recording monitor.

3) After multiple repeated coupling of the 2 commands, the TSM is
conditioned to verbally identify the visual image without the “repeat this
sound” command
4) In order to access data stored in task B-1-1 to B-1-4 TSMs, the trainer-
supervisor anticipates all possible queries that direct the system to the task
B-1-1 to B-1-4 TSMs.

Compound TSMs are formed for all queries that relate to higher level
sensory systems and programmed to generate a specific response to each
anticipated query.

5) The trained sub-task TSMs form a memory system in the controller that
verbally relates the nouns, adjectives, verbs, and adverbs in the lexicon with
other sensory data.

6) Training queries to point to sub-task B-1-1 to B-1-4 TSMs. To
accommodate higher level sensory systems TSMs the task B-1 TSM may be
divided into 4 separate parts:

Sub-Task B-1-1 TSM stores verbal (descriptors) identification of visual
images for all nouns, verbs, adjectives and adverbs listed in the 50,000 word
lexicon.

Sub-Task B-1-2 TSM stores verbal dictionary definitions of all visual
images and associated nouns, verbs, adjectives and adverbs listed in the
50,000 word lexicon.

Sub-Task B-1-3 TSM: The B-1-3 TSM stores verbal encyclopedic
descriptions, of all visual images and nouns, verbs, adjectives and adverbs
listed in the 50,000 word lexicon that are associated with them.

Sub-Task B-1-4 TSM: The B-1-4 TSM stores verbal descriptions of
higher level sensory data (tactile, olfactory, gustatory) obtained on each of
the visual images associated with all nouns, verbs, listed in the lexicon.

30

35

45

50
Table 7B presents the training methodology for subtask

B-2. Training the RRC-robot to perform sub-task B-2 con-
sists of programming the sub-task B-2 TSM to verbally
describe all procedural tasks (and procedural TITs) trained in
Table 3 (with many relations and correlations to visual and
tactile data).

55

TABLE 7B

Training Methodology (Subtask B-2) to verbally describe experiential data
Subtask B-2: Verbal Description of experiential sensory data
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1) The TITs recorded on the sub-task B-2 TSM form an experiential
verbal record of everything “experienced’ by the robot throughout its
lifetime as measured by the operational mode time scale.

2) The training of the sub-task B-2 TSM is a “real-time” verbal recording
function that takes place autonomously and simultaneously while the robot
is performing other prime level tasks.
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TABLE 7B-continued

Training Methodology (Subtask B-2) to verbally describe experiential data
Subtask B-2: Verbal Description of experiential sensory data

3) Training the RRC-robot to perform sub-task B-2 consists of
programming the sub-task B-2 TSM to time-tag and generate verbal TITs
that describe the real time procedural task performed by the robot.

4) The time tagged verbal TITs recorded in the sub-task B-2 TSM, form
anexperiential, time-tagged, verbal memory system that “remembers™ all the
robotic tasks and visual and higher level sensory tasks.

5) The time tagged verbal TIT recorded in the sub-task B-2 TSM may be
accessed by the prime task C-TSMs and by queries posed to the robot that
relate to the experiential operation of the robot at any time.

6) In order to access the data stored in the sub-task B-2 TSM, the trainer-
supervisor anticipates all possible queries that direct the system to the sub-
task B-2 TSMs. Compound TSMs are formed for all queries.

7) The sample queries that point to the sub-task B-2 TSM includes any
mention within the query of present, past, or future tasks performed and the
times that they were performed.

Table 7C presents the training methodology for subtask
B-3. Training the RRC-robot to perform sub-task B-3 con-
sists of programming the sub-task B-3 TSM to respond to
verbal commands that activate displacement tasks that were
formerly activated by visual or tactile TITs.

TABLE 7C

Training Methodology (Subtask B-3) to verbally describe
commands that activate displacement tasks
Subtask B-3 Verbal commands that activate displacement tasks

1. Only group 1-2 persons (see section C) are authorized to command
the RRC-robot to perform sub-task B-3 tasks.

2. The high priority TIT that shifts the robot to sub-task B-3 is the
simultaneous visual image of the group 1-2 person, coupled with the
command spoken by the trainer.

3. Visual or tactile TITs generally initiate procedural tasks defined in the
FIG. 3 HTD. In the sub-task B-3 TSM, new verbal initiating triggers may
be created that are associated with the visual-tactile TITs.

4. The programming procedure includes the formation of a compound
TSM that relates the verbal triggers (sub-task B-3 TSM) with the visual-
tactile triggers (TSMs shown in FIG. 3).

Explanatory Notes:

Verbal descriptor commands are verbal commands to per-
form previously trained procedural tasks (prime level tasks
and lower level destination tasks in FIG. 3). Verbal commands
that require a verbal response (e.g., invalid or emergency
commands that are not validated by the visual and higher level
sensory systems) are discussed in Step 8.

Verbal Descriptor TITs that Generate Motor Action TITs:

In this case a verbal command descriptive of a procedural-
displacement task is generated rather than a visual or tactile
g-final TIT that generally activates displacement tasks in FIG.
4. In addition to activating the prime level tasks listed in FIG.
4 by means of a verbal clause that is descriptive of the prime
level task, it is possible to activate the destination, orientation
reaching and manipulation displacement actions listed in
FIG. 4 by relating the appropriate verbal destination clause
with the g-final TIT associated with the destination shown in
FIG. 2-3. Sample auditory T1T-verbal clauses that may acti-
vate displacement tasks are “walk to the chair,” “sit down,’
“come in,” “walk out.” These short clauses (shown in FIG. 2
as destination clause A, destination clause B, etc.) are analo-
gous to the destination A, destination B, etc., daisy chains
shown in the hierarchical task diagram in FIG. 4.

Incorrectly Structured Verbal Commands that Activate
Displacement Tasks:

The sub-task B-3 TSM may be programmed to respond to
verbal descriptor commands that are (grammatically) incor-
rectly structured. For example “walk to the chair” which is

s
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descriptive of a visual action may be implemented when the
verbal descriptor command is “chair to walk”, “chair walk
t0”, and “walk chair to.” The incorrectly structured verbal
descriptor commands contain all the data required to form a
compound TSM, and may be trained to form compound
TSMs that not only generate a specific response, but may also
be trained to include in the response, recognition of the incor-
rect grammatical structure and correction of the incorrect
grammatical structure.

The Training Methodologies for Subtasks B-4, B-5, and
B-6 are Presented in Tables 8a, 8B, and 8C.

Table 8A presents the training methodology for subtask
B-4. Training the RRC-robot to perform sub-task B-4 con-
sists of programming the sub-task B-4 TSM to describe ver-
bally “How to” perform a previously learned procedural task.
Itis a process of converting visual and tactile TITs into verbal
descriptor TITs.

TABLE 8A

Training Methodology (Subtasks B-4) Verbal description of “how-to”
perform a previouslylearned procedural task

1) In order to verbally describe any procedural level task that the robot is
trained to perform, the sub-task B-4 TSM is programmed to verbalize the
procedural-TIT sequences associated with each procedural prime level Task
(TSMs shown in FIG. 3).

2) The procedural TIT sequence generally consists of visual and tactile
TITs, whereas the B-4 TSM TITs are the verbal words that describe each of
the procedural TITs.

3) The B-4 TSM consists of compound TSMs that relate the visual and
tactile TITs with the verbal words that describe each of the procedural TITs.

4) In order to access the data stored in the sub-task B-4 TSM all possible
queries relating to the procedural prime level task must be anticipated and
the verbal answer programmed into the compound TSM. Data stored in the
B-4 TSM facilitates the answer to queries such as “how does one perform
procedural task A?”

Table 8B presents the training methodology for subtask
B-5. Training the RRC-robot to perform sub-task B-5 con-
sists of programming the sub-task B-5 TSM to read a book
with comprehension. Data stored in the sub-task B-5 TSM
gives the robot the capability to verbally verify whether the
book/article was read, when it was read, the book/article title,
the book/article author, and verbally describe the contents of
the book/article. Queries that access the sub/article task B-5
TSM range from whether and when a book/article was read to
questions about the contents of the book/article. (Also shown
as subtask T-305 in Table 3).

TABLE 8B

Subtasks B-5: Training the RRC-robot to read books.

1) The book/article title and author and the time spent “reading the book”
are time tagged and maintained in the experiential (operational) mode time
scale.

2) The verbal contents of the book/article are recorded and time-tagged in
the training mode time scale

3) Robotic comprehension of the verbal contents of a book is achieved by
relating the written words to the sub-task B-1 TSMs (visual, auditory and
tactile TITs that are associated with those words).

4) The data stored in the sub-task B-5 TSM allows the robot to remember
and recall the contents of the book in the training mode time scale.

5) In order to access the data stored in the sub-task B-5 TSM all possible
queries relating to the reading of the book and the contents of the book must
be anticipated and the verbal answer programmed into the compound TSM.

6) The robot may also be trained to read with comprehension suitably
written (listing both visual tactile and verbal TITs) “How to” books (e.g
“How to” deliver mail, wash dishes, repair a lawn-mower motor etc), and
utilize that information in implementing those “how to” tasks.
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TABLE 8B-continued

Subtasks B-5: Training the RRC-robot to read books.

7) Queries that access the sub/article task B-5 TSM range from whether
and when a book/article was read to questions about the contents of the
book/article.

Table 8C presents the training methodology for subtask
B-6. Training the RRC-robot to perform sub-task B-6
includes programming sub-task B-6 TSM to comprehend
numbers and perform mathematical computations. The sub-
task B-6 TSM stores numbers and units attached to those
numbers and procedural data relating to the operational tasks
of arithmetic, algebra, geometry, calculus and statistical
mechanics. The amount of data stored in sub-task B-6 TSM is
determined by the queries anticipated by the trainer-supervi-
sor relating to numbers, arithmetic, algebra, geometry, calcu-
lus and statistical mechanics, and the answers that must be
programmed into the compound TSMs that represent a quan-
titative mathematical response to the query. (See Table 3
sub-T-306).

TABLE 8C

Subtask B-6. Training the task B-6 TSM to comprehend
numbers and perform mathematical computations.

1) Sub-task B-6 TSM expands the comprehension of words described in
sub-task B-TSM to numbers and their attached units.

2) Sub-task B-6 TSM may be trained to perform (in training mode time
scale) the procedural operational tasks of arithmetic, algebra, geometry,
calculus and statistical mathematics.

3) The B-6 TSM relates the comprehension of verbal and written numbers
and their attached units to the procedural operational tasks that it has been
trained to perform.

4) Comprehension of numbers occurs in the training mode time scale and
expands on the comprehension of numbers present in the 50,000 word
lexicon (see section 7, prime task B).

5) The operations of addition subtraction multiplication and division are
procedural task that are performed in the training time mode either by writ-
ten
or verbal communication.

6) The RRC may be trained to solve addition, subtraction, and
multiplications problems by using an auxiliary device, such as a calculator.
However, this method reduces the mathematical comprehension of the task
B-6 TSM.

7) Procedural algorithmic training (similar to the methods taught humans)
is performed in the task B-6 TSM to store all the arithmetic, algebraic,
geometric, calculus, and statistical mechanics procedural algorithms for
solving problems in that field.

8) Mathematical queries may be presented to the RRC verbally or in
printed form. The robot shall be trained to answer queries either verbally or
in written form.

9) In the training mode, the Task B-6 TSM performs all the mathematical
exercises present in a standard mathematical text book.

10) A sampling of queries that access the task B-6 TSM are verbal word
problems or printed problems or exercises

Step 8. Training the Prime Task C TSM to Respond Ver-
bally to Verbal Speech

Explanatory Notes:

Robot-robot and robot-human verbal interactions are gen-
erally auxiliary interactions that are performed after the robot
has been trained to perform multiple procedural tasks listed in
FIG. 4 and the prime level A and B declarative tasks listed in
FIG. 2-3 and Table 3. The auditory RRC-robot is initially
trained to interact with the following groups of persons.
Group-1 persons are the trainer-supervisors of the RRC-ro-
bot. Only the trainer-supervisors may interrupt or modify the
primary programming ofthe robot (programming of all prime
level task TSMs). Group-2 consists of those persons who are
associated with the procedural-jobs that the robot is trained to
perform. The robot is trained to visually recognize and ver-
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bally identify by name all the persons who are members of
group 1 and group 2. Members of those groups are trained to
interact with the RRC-robot. Members of group 2 may inter-
rupt an on-going procedural task and place the robot in the
conversational mode described in sub-task C-1, and also
allow the robot to resume the procedural task that was inter-
rupted. Group-3 persons consist of all people who are not
members of groups 1-2 (persons not associated with the jobs
that the robot is procedurally trained to perform). Interactions
with persons in groups 1-2 is described in sub-task C-1.
Interactions with persons in group-3 are described in sub-task
C-2, the “in passing” non-confrontational mode, and sub-task
C-3, the “in passing” confrontational mode. Group 3 persons
are generally not visually recognized by the robot and are
regarded as strangers who do not know or understand the
programming of the robot. However, a multitasking robot that
operates in the public arena is trained, first and foremost, with
a prime directive that any physical interaction with another
human or robot is forbidden. Not only are humanoid robots
programmed to avoid obstacles that trigger their “skin-like”
pressure transducers, they are also programmed that under all
circumstances pressure transducer contact with another
human is doubly forbidden. Humanoid robots are pro-
grammed to obey rules of pedestrian and vehicular traffic,
visually recognize and respond to policemen, firemen, or
public workers, and visually recognize and avoid commonly
occurring unusual situations or emergencies. Finally, as a
general rule, the trained RRC-robot should not placed in an
environment that the robot is not trained to cope with. Since
the RRC-robot is trained to avoid all obstacles and all physi-
cal interactions with humans, it is prudent not to place the
robot in an environment where humans are bent on the robot’s
destruction.

The Training Methodologies for Subtasks C-1, C-2, and
C-3 are Presented in Table 9A-B-C:

Table 9A presents the training methodology for subtask
C-1. Training the RRC-robot to perform sub-task C-1 con-
sists of programming the sub-task C-1 TSM to perform
robotic conversation, first with the trainers (group-1 persons)
and then with robotic companions (group-2). (Listed as task
T-401 in Table 3).

Conversational Constraints Related to Subtask C-1:

Any statement or question posed to the RRC-robot requires
that the RRC-controller search through its TSM-declarative
memory systems for an appropriate reply. In general the RRC
is trained to utilize the search engine access rule described in
the introductory explanatory notes to Section D, in order to
facilitate the search for an appropriate response to any audi-
tory input signal. Immediately after the RRC-robot is placed
in a conversational mode it is necessary that the robot apply
the access rule to any verbal input that represents a question or
statement directed to the RRC-robot. The access rule applied
to the query should abstract and point towards a TSM or
compound TSM where the reply to the input query may be
stored.

The eight most important TSMs available to form com-
pound TSMs for the sub-task C-1 conversational mode are the
following:

1. Sub-Task B-1-1 TSM: The B-1-1 TSM stores sets of
TITs of verbal (descriptors) identification of visual images
for all nouns, verbs, adjectives and adverbs listed in the
50,000 word lexicon.

2. Sub-task B-1-2 TSM: The B-1-2 TSM stores sets of TITs
of verbal dictionary definitions of all visual images and the
nouns, verbs, adjectives and adverbs listed in the 50,000 word
lexicon that are associated with them.
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3. Sub-Task B-1-3 TSM: The B-1-3 TSM stores sets of
TITs of verbal encyclopedic descriptions, of all visual images
and nouns, verbs, adjectives and adverbs listed in the 50,000
word lexicon that are associated with them.

4. Sub-Task B-1-4 TSM: The B-1-4 TSM stores sets of
TITs of verbal descriptions of higher level sensory data (tac-
tile, olfactory, gustatory) obtained for each visual image asso-

ciated with all nouns, verbs, adjectives and adverbs listed in
the 50,000 word lexicon.

TABLE 9A

Programming Robot to Perform Robotic Conversation
Subtask C-1: programming robot to perform robotic conversation

1. The high priority TIT that shifts the robot to a conversational mode, the
sub-task C-1 mode, is a simultaneous visually recognized image of a group
1-2 person, and the spoken words by the person “stop-lets talk” or “lets
talk.”

2. The “stop-lets talk command causes the robot to interrupt the procedural
task it is doing and devote itself to conversation, whereas the “lets talk”
command allows the robot to continue the procedural task and converse
during the ongoing procedural task.

3. The sub-task C-1 TSM is trained to utilize the search engine access rule
to form a set of compound TSMs and search for the particular TSM that
has the proper response programmed into it.

4. A sampling of verbal queries that point to the B-1-1 to B-1-4 TSMs and
a sample set of responses programmed into the task B-1-1 to B-1-4 TSMs
is presented in section 7.1 (Note, the verbal definition of a visual image
(B-1-2 TSM) may be used to comprehend that image).

5. A sampling of verbal queries that point to the B-2 TSM and a sample set
of responses programmed into the sub-task B-2 TSM is presented in
section 7.2.

6. A sampling of verbal queries that point to the B-4 TSM and a sample set
of responses programmed into the sub-task B-4 TSM is presented in
section 7.4.

7. A sampling of verbal queries that point to the B-5 TSM and a sample set
of responses programmed into the sub-task B-5 TSM is presented in
section 7.5.

8. A sampling of verbal queries that point to the B-6 TSM and a sample set
of responses programmed into the sub-task B-6 TSM is presented in
section 7.6 (Note that the RRC-robot cannot discuss topics and data
obtained from books and/or periodicals that have not been programmed into
the TSM system).

9. The generated verbal speech exhibits “comprehension” of the input
sound signal by training the response so it is based on the TITs
programmed into the task B TSMs that exhibit comprehension (relations to
visual-auditory-tactile-olfactory-gustatory data) of the words and sentences
stored therein.

5. Sub-Task B-2 TSM: The B-2 TSM stores sets of TITs of
time tagged verbal “memories” of past, present, experiential
tasks and actions performed by the robot (operational mode
time scale) and future tasks planned and programmed using
the operational mode time scale.

6. Sub-Task B-4 TSM: The B-4 TSM stores sets of TITs of
time independent “How to” Verbal descriptors of all proce-
dural tasks.

7. Sub-Task B-5 TSM: The B-5 TSM stores sets of TITs of
time tagged verbal descriptors of all books, articles, newspa-
pers, and notes “read” with comprehension by the RRC-
robot. Note that the date and time of reading-training the
contents of the reading material is time tagged in the opera-
tional mode time scale, whereas the story line of the reading
material may be time tagged in book-time, a subcategory of
the training mode time scale.

8. Sub-Task B-6 TSM: The B-6 TSM stores sets of TITs of
time independent verbal descriptors of numbers and math-
ematical computations that the robot is trained to perform.

Programming the access rule into the queries is a process
that begins with the programming of the prime task B TSMs
themselves. In the design of each task B TSM (comprehen-
sion tasks) all possible queries associated with sub-task C-1
must be anticipated whenever a (comprehensive) verbal sen-
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tence is programmed into the task B TSM. For each of the
possible queries one or more of the array of task B TSMs must
have an appropriate and specific answer programmed into it.
The programming technique (and the manpower required) is
similar to the programming of some of the word based search
engines such as Google or Bing.

Conversational Constraints Related to Subtask C-2:

Table 9B presents the training methodology for subtask
C-2. Training the RRC-robot to perform sub-task C-2 con-
sists of programming the sub-task C-2 TSM to respond to
polite auditory confrontations (group-3 persons), (listed as
task T-402 in Table 3, and Sub-task C-2 in FIG. 2). A multi-
tasking robot that operates in the public arena is trained to
obey the laws and rules of pedestrian and vehicular traffic,
visually recognize and verbally respond to policemen, fire-
men, or public workers, and visually recognize and avoid
commonly occurring unusual situations or emergencies. The
sub-task C-2 TSM is programmed to add a polite verbal
interaction capability to RRC-robots that operate in the public
arena.

TABLE 9B

Subtask C-2: “In Passing” Non-Confrontational Mode.

1. The sub-task C-2 TSM responds verbally to a non-confrontational, “in
passing,” verbal statement generated by a group-3 person. The “in passing”
verbal encounter is treated as an obstacle that delays but does not interrupt
the operational task. The verbal statements consist of greetings, questions,
friendly comments, and non-confrontational statement.

2. The sub-task C-2 TSM is programmed to respond politely to all non-
confrontational statements anticipated by the trainer-supervisor.

3. All queries that request information or lengthy conversation are
programmed with the response that ends the encounter. For example, a
response such as “sorry, I am not programmed to talk to you or answer any
additional queries.”

Conversational Constraints Related to Subtask C-3:

Table 9C presents the training methodology for subtask
C-3. Training the RRC-robot to perform sub-task C-3 con-
sists of programming the sub-task C-3 TSM to respond to
auditory confrontations, emergency sounds, and valid/invalid
commands (group-3 persons). Task T-403 in Table 3, and
Sub-task C-3 in FIG. 2.

A visual, non-verbal multi-tasking RRC robot is trained to
operate cooperatively and inconspicuously in any confronta-
tional or emergency situation that it has not been programmed
to cope with. The visual, verbal multi-tasking RRC-robot
adheres to the trained procedural response of the non-verbal
RRC, except that the declarative memory system, namely the
sub-task C-3 TSM, is accessible to verbally enhance the coop-
erative, inconspicuous training of the non-verbal RRC.

The subtask C-3 TSM is programmed to interrupt any
operational task that it is performing, and respond to a) a
verbal or physical obstruction by a group-3 person, b) a com-
manding, authoritative loud sound, ¢) a loud sound such as a
scream, screech, crash, explosion, siren, etc., and d) an emer-
gency situation (obstructions or accidents). In order to discuss
the verbal response of the task C-3 TSM, group 3 persons are
divided into 2 sub-groups. The first sub-group, C-3a, includes
group-3 persons that are recognized as policemen, firemen,
ambulance personnel, and authoritative public leaders
(mayor, councilman, etc.). The second subgroup, C-3b,
includes pedestrians, curious viewers, or victims or perpetra-
tors of the situation.
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TABLE 9C

Sub-task C-3, the “in passing” Confrontational mode.

1. The high priority TIT that shifts the robot to sub-task C-3 is a physical or
verbal obstruction by a group-3 person, a commanding or authoritative
sound, or an emergency sound (e.g., scream, crash, siren, etc), often coupled
with visual and tactile emergency TITs.

2. The robot must first assure whether the interaction is with a person in sub-
group C-3a o rC-3b. (If uncertain-The RRC may ask “are you a
policeman?”)

3. In case of a verbal or physical obstruction by a subgroup C-3b person, the
RRC-robot couples a verbal response with a careful, non-violent withdrawal
from the interaction. In the case where the interaction does not involve
physical contact, a sample verbal response is “sorry, I am not programmed
to talk to you or answer any additional queries- I must now return to my
job.”

JIn the case where the interaction is becoming violent and may lead to
damage to the robot, a sample verbal response is “stop! stop! I am calling the
police, stop!”

4. In case of an emergency sound or a commanding authoritative sound not
directed at the robot, a RRC-robot not specifically trained to cope with this
emergency situation shall obtain visual, tactile, and/or olfactory data and
respond to the sound by moving to a safe location.The auditory RRC-robot
shall respond to a un-recognized non-confrontational, commanding,
authoritative sound as specified above. If the authoritative sound is coupled
with confrontational behavior the sub-task C-3 TSM shall respond as
specified above.

5. In an emergency in which the auditory data (e.g., screech, explosion, etc)
is validated by visual-tactile data, a RRC-robot co-mingling with group-3
people is trained to interrupt its operational displacement tasks, respond
verbally to emergency queries, accept a limited number of emergency
commands, and wait until questioned by subgroup C-3a persons.

6. Emergency queries programmed into task C-3 TSM include a) what
happened? (“I don’t know,” “I saw an accident”, etc.) b) “where is a safe
location,” or “lets get out of here.”

7. Sample emergency commands & queries accepted by the RRC robot are
“lets get out of here,” “step aside,” “please stand out of the way, in the
corner, and ” “who are you?” “identify yourself,” “what were you doing at
this location,” ete.

8. Queries that access the sub/article task B-5 TSM range from whether and
when a book/article was read to questions about the contents of the
book/article. Improvements associated with b) higher levels of intelligence
programmed into the system.

Higher levels of identification recognition and comprehen-
sion may be applied to any sensation by relating the sensation
to a larger number of related patterns and signals obtained by
all the sensors. For example, the sensation resulting from
visualization and comprehension of the image allows the
robot to a) reconstruct and distinguish the characteristics of a
low resolution or partly obscured sensation-image by access-
ing data stored in the memory storage system of the RRC
robot. b) Distinguish whether the image presents a threat or is
benign (such as a dangerous gun versus a toy gun). And ¢)
distinguish the magnitude of any threat or obstacle by means
of the priority level assigned to any recognized image. For
example high levels of artificial intelligence may be achieved
by use of the awareness of feedback data from joints and
reaction forces from the ground when training the robot to
walk, run or dance like a human.

In general, higher levels of identification, recognition,
awareness and comprehension applied to any sensation
improves the sensation itself and leads to greater knowledge
ot how to respond to the sensation.

Section E—Innovative Robotic Speech Processing
and Commercial Application

Improvements in Robotic Verbalization and Speech Pro-
cessing that Lead to Commercial Application

Step 6a in the Interface Circuit Stage (Table 1) describes
the unique speech processing methodology performed in the
design of the intelligent verbalizing RRC-Robot. The audi-
tory RRC-robot performs speech processing in a unique man-
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ner that diverges from the standard methodologies of speech
processing, such as word recognition processing, lexical seg-
mentation processing, interactive-activation processing, con-
text effect processing, syntactic effects on lexical access pro-
cessing, lexical information and sentence processing,
syntactic processing and intonation-structure processing.
Instead, speech processing is performed by training the ver-
bal-phoneme sound generators to repeat the “heard” pho-
neme-sound based words and sentences. The RRC is trained
to identify and recognize co-articulated word structures and
commonly used colloquial expressions. Furthermore, in sec-
tion D, the RRC robot is trained to comprehend experientially
the processed words and sentences. The result is a greatly
improved capability of the RRC Robot to understand the
heard words and sentences and to respond intelligently to the
heard words and sentences.

Great Improvements in State of the Art of Speech Process-
ing Occurs in the Mapping of the Single Variable Acoustic
Signal onto the Multi-Variable Phonetic Structure.

A unique phonetic structure requires ‘unpacking’ all the
variables that are dependent on the phonetic structure. In the
Auditory RRC-Robot “Unpacking” is performed by training
the RRC to repeat and “remember” the “heard” words and
sentences of multiple speakers as described above. Further
“unpacking” is performed by increasing the Al-level of the
RRC-robot by relating, associating, and calibrating the heard
verbal speech with the corresponding visual and tactile data
obtained in the visual and tactile coordinate frames in which
the robot is operating. This increase in the Al-level leads to the
development of a sensitivity to such factors as a) acoustic
phonetic context, speaking rates, and loudness, which are
detected. recognized and comprehended by the TSMs that
make up the memory system of the Declarative Hierarchical
Task Diagram (DHTD), b) the speakers ‘body’ language (in-
cluding facial expression), which are detected recognized and
comprehended by use of the visual search engine of the pro-
cedural HTD, and ¢) “emotion laden” intonations that include
phonetic context, speaking rates, loudness, and body lan-
guage, which are detected by coordinating the search engines
of'the visual and tactile systems with the search engine of the
auditory RRC. The auditory-visual RRC takes into account
the acoustic consequences of such variations when mapping
the acoustic signal into the phonetic structure.

In Addition the RRC Humanoid Robot My be Programmed
to Recognize and Correct Incorrect Grammatical Structures:

Grammatical rules are implicitly programmed into the sys-
tem in the training phase when queries are anticipated in order
to access data stored in the TSMs, and when compound TSMs
are formed that contain a specific verbal response to the query.
Incorrectly structured queries must include sufficient infor-
mation to form compound TSMs. Such queries are trained to
form compound TSMs that not only generate a specific
response to the query, but are also trained to include within the
response, recognition of the incorrect grammatical structure
and correction of the incorrect grammatical structure.

Auditory RRC-Verbalizing Answering Machine System:

Commercial application of the invented robotic speech
processing capability is exemplified by the RRC-auditory
verbalizing answering machine. A stand alone RRC-answer-
ing machine is formed by combining 3 parts of a fully trained
Auditory RRC Humanoid Robot: a) The auditory apparatus
stage, b) The auditory Interface Circuit Stage, and ¢) The
RRC processing stage. A fully trained RRC-auditory-verbal-
izing answering is sold separately (without the robotic body
and limbs) as a stand-alone system.

RRC-auditory verbalizing answering machines may func-
tion as telephone answering machines, as a receptionist in any
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office, commercial organization, non-profit organizations
(museums, art galleries, etc.), as a receptionist and guide to
any federal, state and local governmental organizations, and
as a search engine that is accessed verbally and responds
verbally to any query.

Note that RRC-auditory-verbalizing answering machines
are unique in that they are the only ones that use an internal
one-to-one mapping methodology of the acoustic signals
onto a reasonable phonetic structure. As a result, for example,
the preferred embodiment system is designed to recognize
any word present in a 50,000-word lexicon, and any sentence
made up of those words. This leads to an accuracy of identi-
fication and recognition of words and sentences approaching
100%. Furthermore, with the search engine access rule the
system may be programmed to respond verbally and appro-
priately to any query.

Section F—the Underlying Electronic System

The electronic control system described in the foregoing
pages is a stand-alone robotic controller, the RRC, that is
programmed experientially using innovative behavioral pro-
gramming-training techniques. The underlying computa-
tional system is implemented as a set of software processes
that are specified as is typical for software processes. That is,
as a set of instructions recorded on a computer readable
storage medium (also referred to as computer readable
medium or machine readable medium). When these instruc-
tions are executed by one or more processing unit(s) (e.g., one
or more processors, cores of processors, or other processing
units), they cause the processing unit(s) to perform the actions
indicated in the instructions. Examples of computer readable
media include, but are not limited to, CD-ROMs, flash drives,
RAM chips, hard drives, EPROMs, etc. The computer read-
able media does not include carrier waves and electronic
signals passing wirelessly or over wired connections.

The high level memory of the RRC-system, described in
this disclosure, is implemented in the Task Selector Modules
(TSMs), which are described by reference to FIGS. 2-3. How-
ever, the term ‘memory’ also refers to the storage medium
used to implement the underlying component subsystems. In
that context, the term ‘software,” is meant to include firmware
residing in read-only memory or applications stored in mag-
netic storage, which can be read into memory for processing
by a processor. Also, in some embodiments, multiple soft-
ware inventions can be implemented as sub-parts of a larger
program while remaining distinct software inventions. In
some embodiments, multiple software inventions can also be
implemented as separate programs. Finally, any combination
of separate programs that together implement a software
invention described here is within the scope of the invention.
In some embodiments, the software programs, when installed
to operate on one or more electronic systems, define one or
more specific machine implementations that execute and per-
form the operations of the software programs.[]

FIG. 11 conceptually illustrates an electronic system 1100
with which some embodiments of the invention are imple-
mented. The electronic system 1100 may be a computer,
phone, PDA, or any other sort of electronic device. Such an
electronic system includes various types of computer read-
able media and interfaces for various other types of computer
readable media. Electronic system 1100 includes a bus 1105,
processing unit(s) 1110, a system memory 1115, a read-only
1120, a permanent storage device 1125, input devices 1130,
output devices 1135, and a network 1140.

Thebus 1105 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
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ous internal devices of the electronic system 1100. For
instance, the bus 1105 communicatively connects the pro-
cessing unit(s) 1110 with the read-only 1120, the system
memory 1115, and the permanent storage device 1125.

From these various memory units, the processing unit(s)
1110 retrieves instructions to execute and data to process in
order to execute the processes of the invention. The process-
ing unit(s) may be a single processor or a multi-core processor
in different embodiments.

The read-only-memory (ROM) 1120 stores static data and
instructions that are needed by the processing unit(s) 1110
and other modules of the electronic system. The permanent
storage device 1125, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 1100 is off. Some embodiments of the invention use a
mass-storage device (such as a magnetic or optical disk and
its corresponding disk drive) as the permanent storage device
1125.

Other embodiments use a removable storage device (such
as a floppy disk or a flash drive) as the permanent storage
device 1125. Like the permanent storage device 1125, the
system memory 1115 is a read-and-write memory device.
However, unlike storage device 1125, the system memory
1115 is a volatile read-and-write memory, such as a random
access memory. The system memory 1115 stores some of the
instructions and data that the processor needs at runtime. In
some embodiments, the invention’s processes are stored in
the system memory 1115, the permanent storage device 1125,
and/or the read-only 1120. For example, the various memory
units include instructions for processing appearance alter-
ations of displayable characters in accordance with some
embodiments. From these various memory units, the process-
ing unit(s) 1110 retrieves instructions to execute and data to
process in order to execute the processes of some embodi-
ments.

The bus 1105 also connects to the input and output devices
1130 and 1135. The input devices enable the user to commu-
nicate information and select commands to the electronic
system. The input devices 1130 include alphanumeric key-
boards and pointing devices (also called “cursor control
devices”). The output devices 1135 display images generated
by the electronic system 1100. The output devices 1135
include printers and display devices, such as cathode ray
tubes (CRT) or liquid crystal displays (LCD). Some embodi-
ments include devices such as a touchscreen that functions as
both input and output devices.

Finally, as shown in FIG. 11, bus 1105 also couples elec-
tronic system 1100 to a network 1140 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN™), or an Intranet), ora
network of networks (such as the Internet). Any or all com-
ponents of electronic system 1100 may be used in conjunc-
tion with the invention.

These functions described above can be implemented in
digital electronic circuitry, in computer software, firmware or
hardware. The techniques can be implemented using one or
more computer program products. Programmable processors
and computers can be packaged or included in mobile
devices. The processes and logic flows may be performed by
one or more programmable processors and by one or more set
of programmable logic circuitry. General and special purpose
computing and storage devices can be interconnected through
communication networks.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
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program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-read-
able storage media, machine-readable media, or machine-
readable storage media). Some examples of such computer-
readable media include RAM, ROM, read-only compact
discs (CD-ROM), recordable compact discs (CD-R), rewrit-
able compact discs (CD-RW), read-only digital versatile
discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of
recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW,
DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD
cards, micro-SD cards, etc.), magnetic and/or solid state hard
drives, read-only and recordable Blu-Ray® discs, ultra den-
sity optical discs, any other optical or magnetic media, and
floppy disks. The computer-readable media may store a com-
puter program that is executable by at least one processing
unit and includes sets of instructions for performing various
operations. Examples of computer programs or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

Section G—Differentiating Between Robotic and
Human-Like Subjective Experiences

To avoid philosophical discussions, is important to note
that the authors do not claim that the intelligent robots, with
subjective data programmed into them, have the same sub-
jective experiences and emotions that a human has in ‘feel-
ing’ the tactile data, ‘seeing’ the visual data, ‘hearing’ the
auditory data, etc. The data is robotically subjective because
it is programmed into the self-identity/self-knowledge coor-
dinate frame of the robot. The robot’s internal reaction to the
data, or whether the robot has an internal reaction is not
known to the authors. The authors do not claim that the robot
has emotions (pain, pleasure, boredom, love, hate etc.), simi-
lar to a human. However, the robots external reaction to the
data is experientially, that is behaviorally, programmed to be
identical to human behavior. The robot behaves as if it feels
the tactile data, as if it sees the visual data, and as if it hears
and understands the auditory data. That is why we speak of
robots with ‘experiential feeling, ‘experiential seeing,’ ‘expe-
riential hearing,’ ‘experiential smelling,” ‘experiential tast-
ing,” and ‘experiential intelligence and knowledge.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other specific
forms without departing from the spirit of the invention. One
embodiment disclosed herein is for an Auditory RRC-human-
o0id robot programmed to achieve human-like levels of ver-
balization and auditory artificial intelligence (AI). The Audi-
tory-RRC is built upon the Visual-RRC, a disclosure of which
is included in co-pending U.S. Non-Provisional patent appli-
cation Ser. No. 14/253,861, filed Apr. 15, 2014, which in turn
is built upon a Relational Robotic Controller (RRC),
described in U.S. Pat. No. 6,560,512, dated May 6, 2003, by
adding; a) an Auditory recording monitor, b) a verbal-pho-
neme sound generator, ¢) a new Interface Circuit between the
auditory recording monitor, the verbal-phoneme sound gen-
erator, and the RRC, and d) a new auditory-verbalizing pro-
gramming capability that gives the robot human-like intelli-
gent capability to hear and understand verbal speech and
respond intelligently by verbalizing a response to the heard
signal. Although preferred embodiments are disclosed herein,
many variations are possible which remain within the con-
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cept, scope, and spirit of the invention; these variations would
be clear to those skilled in the art after perusal of this appli-
cation.

In addition, a number of the figures conceptually illustrate
processes. The specific operations of these processes may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments. Furthermore, the pro-
cess could be implemented using several sub-processes, or as
part of a larger macro process.

Thus, one of ordinary skill in the art would understand that
the invention is not to be limited by the foregoing illustrative
details, but rather is to be defined by the appended claims. In
the claims section the authors will stress claims that are inher-
ent to the newly added subsystems, and avoid redundant
claims associated with claims made in the previously pat-
ented disclosure. However, some degree of redundancy is
incorporated into the Auditory RRC-Humanoid Robot claims
section whenever verbalization-Al is added to the procedural
intelligence describe in the other patents and guided by the
Procedural HTD (PHTD).

We claim:

1. An auditory relational robotic controller (RRC)-human-

oid robot comprising:

a human-like mechanical robotic system comprising a
human-like tactile recording monitor, a human-like
visual recording monitor, and a human-like robotic body
comprising a set of bipedal limbs, a set of arms, a set of
hands, a set of fingers, an energy power source, and sets
of motors and gears used to move the body, limbs, arms,
hands, and fingers;

an auditory human-like recording monitor sensitive to an
auditory frequency range of 1-20,000 cycles per second
(cps), said auditory human-like recording monitor com-
prising a set of linear pickup microphones and a set of
spectrum analyzers that convert incoming sound into
electronic phonetic (a-f-t)-signal output characterized
by an amplitude, frequency, time (a-f-t) chart showing
the amplitude and frequency of the incoming sound as a
function of time;

a relational robotic controller (RRC) that satisfies a set of
specification requirements for relational robotic control-
lers;

a verbal-phoneme sound generator that generates
sequences of phoneme sounds that are controlled by the
RRC;

an interface circuit positioned between the auditory
human-like recording monitor and the RRC, said inter-
face circuit configured to decompose an electronic pho-
netic (a-f-t)-signal output of each spectrum analyzer into
collective modalities tuned to the characteristics of ver-
bal speech, generate a g-magnitude and p-direction
p-phoneme vector that is a suitable input to a multi-
dimensional function space Nodal Map Module
(NMM), standardize the p-phoneme vector to operate in
a Task Selector Module (TSM), the NMM, a Sequence
Stepper Module (SSM) of the RRC, and successfully
activate the verbal-phoneme sound generator, and
develop a speech processing methodology for obtaining
a one-to-one mapping of the acoustic signals onto a
phonetic structure free of segmentation errors; and

a programming methodology defined by a Declarative
Hierarchical Task Diagram (DHTD) specification that
provides the robot a human-like, high 1Q form of verbal
artificial intelligence (Al).
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2. The auditory RRC-humanoid robot of claim 1, wherein
the TSM is included in a Hierarchical Task Diagram (HTD)
structure for the assignment of priorities to Task Initiating
Trigger TIT-patterns that activate tasks selected by the TSM.

3. The auditory RRC-humanoid robot of claim 1, wherein
the verbal-phoneme sound generator generates 120 different
phoneme sounds.

4. The auditory RRC-humanoid robot of claim 3, wherein
each phoneme sound output of the verbal-phoneme sound
generator is activated by one of the 120 different auditory
p-vectors.

5. The auditory RRC-humanoid robot of claim 1, wherein
the set of linear pickup microphones comprises a right-side
linear pickup microphone positioned on the right of an elec-
tronic enclosure and a left-side linear pickup microphone
positioned on the left of the electronic enclosure.

6. The auditory RRC-humanoid robot of claim 5, wherein
the set of spectrum analyzers comprises a first spectrum ana-
lyzer that converts incoming sound from the right-side linear
pickup microphone and a second spectrum analyzer that con-
verts incoming sound from the left-side linear pickup micro-
phone.

7. The auditory RRC-humanoid robot of claim 1, wherein
the DHTD specification comprises a programming method-
ology that is used to program each auditory TSM.

8. The auditory RRC-humanoid robot of claim 7 further
comprising a declarative memory system comprising all pro-
grammed auditory TSMs within the RRC.

9. The auditory RRC-humanoid robot of claim 8, wherein
the TSMs identity a sequential set of phonemes as a TIT-
grouping.

10. The auditory RRC-humanoid robot of claim 9, wherein
a TIT-processing period associated with each TIT-grouping
determines the number of sequential phonemes that must be
processed before the RRC recognizes the total sequence as a
TIT.

11. The auditory RRC-humanoid robot of claim 10,
wherein a TSM is programmed to repeat sounds spoken by a
trainer-supervisor.

12. The auditory RRC-humanoid robot of claim 11,
wherein the TSM is programmed to accurately repeat all the
words and sentences taken from a lexicon comprising at least
50,000 words that represents a total vocabulary of the robot.

13. The auditory RRC-humanoid robot of claim 12,
wherein a TSM is optimized to properly enunciate words and
sentences listed in the lexicon by refining a design of the
verbal-phoneme sound generator to assure that lexical seg-
mentation and timing intervals between successive phonemes
correctly reflect phonetic structure, expanding the number of
phoneme sounds to reduce segmentation problems, and refin-
ing tuning of collective modalities generated by the set of
spectrum analyzers to the actual collective modalities present
in an English language verbal input signal.

14. The auditory RRC-humanoid robot of claim 13,
wherein a one-to-one mapping between acoustic properties of
speech and phonetic structure of an utterance is performed by
training the TSM to repeat, recognize, and remember the
heard words and sentences.

15. The auditory RRC-humanoid robot of claim 1, wherein
the behavioral programming methodology is experiential in a
manner such that the system relates, correlates, prioritizes
and remembers input patterns by performing verbalization
tasks with the verbal phoneme sound generator and relating
the performed verbalization tasks to manual dexterity
manipulation task TITs, locomotion tasks, and visualization
task TITs associated with the self-location and identification
coordinate frame.
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16. The auditory RRC-humanoid robot of claim 15,
wherein behavioral programming techniques are guided by a
Hierarchical Task Diagram (HTD) in order to achieve high
levels of Al for robotic self-knowledge, identification, recog-
nition, visualization or comprehension of input sensory pat-
terns.

17. The auditory RRC-humanoid robot of claim 16,
wherein the robotic self-knowledge level of artificial intelli-
gence, analogous to human proprioceptive self-knowledge,
comprises training/programming the robot to reach and touch
all itch points located on the surface of the robotic body, and
all points in the near space surrounding the robotic body,
identify and locate all itch points, and identify and locate all
end joint body parts used to reach and touch all the itch points.

18. The auditory RRC-humanoid robot of claim 1, wherein
a stand-alone RRC-auditory-verbalizing answering machine
system is formed by combining three core parts of a fully
trained auditory RRC-humanoid robot, wherein the three
core parts comprise an RRC system, an auditory RRC record-
ing monitor comprising a set of pick-up microphones and an
interface spectrum analyzer, and a verbal phoneme sound
generator.

19. The auditory RRC-humanoid robot of claim 18,
wherein the stand-alone RRC-auditory-verbalizing answer-
ing machine system is experientially trained by an entire
RRC-humanoid robotic system comprising sensors and a
complete robotic body and limbs.

20. The auditory RRC-humanoid robot of claim 19,
wherein the stand-alone RRC-auditory-verbalizing answer-
ing machine system obtains specialized trained expertise and
verbal IQ Al level that is a subset of the total Al level expe-
rientially trained by an entire RRC-humanoid robotic system.

#* #* #* #* #*
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